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Abstract. TV advertising makes up more than one third of total ad
spending, and is transacted based on forecast ratings and viewership.
Over time, forecast accuracy has decreased due to fragmentation of con-
sumer behavior. Through a comprehensive study we find that an as-
sortment of models combined with an ensemble method leads to better
accuracy than any single method. This results in an 11 percent improve-
ment over a naive baseline method, across 100 of the largest networks.
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1 Introduction

In this paper we examine the properties of 100 largest TV networks in US in
terms of aggregated hourly viewership (impressions), and evaluate the perfor-
mance of several forecasting models against a simple seasonal averaging. Under-
standing of the behavior of such viewership time series is vital for accurate tar-
geted advertising for even with the rise of digital media, TV advertising spending
makes up more than a third of total ad spending. It was estimated by Adweek
[1] that the total TV ad spending in the US for 2018 adds up to over 68 billion
dollars. The majority of it is bought and sold based on forecast ratings and im-
pressions. Previous research [3] has found that TV forecasts have become less
accurate over time due to the fragmentation of audiences and increasing number
of networks. Inaccurate forecasts can lead to disruptions in the media planning
process and financial losses. Thus, developing models and ways to measure fore-
casted performance can have a big impact on advertisers’ bottom line.

The purchase of television advertisement time is mostly influenced by a televi-
sion program’s predicted performance. Consequently, the prediction and analysis
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of television audience sizes has been covered extensively. This analysis has shown
that forecasting errors are increasing over time. This trend has been attributed
to a series of causes such as the fragmentation of TV audiences due to changing
ethnic diversity and increasing education levels in the American population [7].
At the program level, the increased choice of programs and networks for TV
viewers has been a large cause of the reduction in forecasting accuracy [7, 3].
Measurements of program quality itself are a high predictor of the error [8].

Yet another level of complexity to viewership forecasting is due to Digital
Video Recording (DVR) services that allow viewers to create their own schedules
and break the established viewing patterns. Zigmond et. al. [9] discovered that
although up to 70% of ads are skipped in the households with DVR, some of the
niche ads appear to have a much higher audience retention.

1.1 Related work

Nevertheless, numerous models have been tried to improve these forecasts, mainly
at the aggregate level. Most models focus on major networks and only prime-
time viewing. J. Arvidsson [2] studied short-term forecasting of on-demand video
viewership comparing the performance of a neural network predictor against a
simple seasonal averaging with the latter being slightly more accurate. R. Weber
[10] reported that Neural Networks and general linear models provided the most
accurate short- and long-term forecasts for the viewership data of the 8 major
German TV networks with the SMAPE errors ranging from 15% to 28%.

Linear Holt-Winters and ARIMA models were used by R. Neagu [11] for
long-term forecasting of Nielsen data with the latter model being less accurate.
Pagano et. al. [12] applied autoregressive models (AR, ARX, and STAT) for
short-term forecasting of TV ratings in terms of mean viewing time per household
per network. The reported normalized RMSE ranged from 0.80 to 0.87.

Meyer et. al. [13] studied how forecast aggregation affects accuracy of predic-
tors on 3 levels: population, segment, and individual. They reported regression
models to slightly outperform decision trees and neural networks on all levels of
aggregation, and the population level to have the most accurate forecasts.

Nikolopoulos et. al. [14] compared the performance of Multiple Linear Re-
gression, Simple Bivariate Regression, several Neural Networks, and predictors
based on the nearest neighbor analysis and human judgment on the Greek TV
audience ratings in terms of mean absolute error. Top two models to achieve the
highest accuracy of around 9.0 were the models based on 5-nearest neighbors
and simple linear regression.

Many recent research works are focused on the effects of exogenous variables
on TV viewership due to the overall growth of data collection. Wang et. al. [15]
showed the influence of Belgian Pro League soccer games schedule (kickoff time,
month, and opponents) on TV viewership and stadium attendance. Gambaro
et. al. [16] discovered that news content is a strong predictor of viewership: soft
news turn viewers off and vice versa. Belo et. al. [17] concluded that the presence
of Time-Shift TV that allows to watch live programs recorded on average has
increased TV viewership per household by 4 minutes a day.
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1.2 Contributions

Motivated by the increase of the forecasting errors, earlier works predicting TV
viewership at the aggregate level, and having the domain expertise of TV adver-
tising at Simulmedia, we make the following contributions in this paper:

– we aggregate set-top box data collected from individual households into
hourly viewership time series for the top 100 TV networks in US and de-
termine their periodicity, seasonality, and presence of trends that helps us
select better parameters for our predictive models;

– we examine individual performances of 4 forecasting models: seasonal av-
eraging that we use as a baseline predictor, Facebook’s prophet, Fourier
extrapolation, and XGboost;

– we build an ensemble predictor that reduces the negative effects of overfitting
of the 4 individual models. It benefits from the diversity of the models that
results in uncorrelated errors between each pair of the models.

2 Viewership data

2.1 Set-top box data aggregation

To accurately measure TV viewing, data scientists at Simulmedia collected view-
ership data from the set-top boxes of over 5 million US households using different
cable providers. These data were weighed and projected to match the national
Census measurements using demographic information such as age, gender, in-
come, and presence of children. This census-weighed panel is called SimulPanel.
While historically most ratings have been done on the Nielsen panel, we used
Simulmedia’s panel since the larger sample size allows us to achieve more precise
results by minimizing the measurement noise.

The original data were comprised of viewing sequences of individual house-
holds at a minute level. We standardized the data in two steps: 1. weighed
aggregation of the viewership of all the households at a minute level; 2. aver-
aging the viewership to the hourly level. As a result, we obtained hourly level
viewership time series for each of the top 100 networks. One can think of these
aggregated time series as the series of the expected counts of the households
that will be reached by an ad that was shown at random during that hour. For
a given minute m the computations are as follows:

xm =
∑
i∈H

wiai,m (1)

where the sum is over the entire household set H, wi is the household weight,
and ai,m is a binary indicator of whether household i watched minute m. The
hourly values are acquired from the minute level ones with

xhour =
∑

m∈hour

xm/60. (2)
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Fig. 1. Long-term trend in average daily viewership

2.2 Periodicity, seasonality, and trend

Aggregated viewership data have a great property: random individual viewing
habits are averaged out allowing the global periodic patterns to emerge. Fig. 2
displays the aggregated and normalized viewership data at an hourly level for 100
most viewed TV networks in US as of March, 2018. Visually we can notice that
although there are certain differences among the networks, they tend to have a
strong hourly and daily periodicity (darker areas where the points overlap).

To measure the strongest periods, we applied Fast Fourier Transform (FFT)
[4] with Blackman window [5] to the network viewership time series. Fig. 3
demonstrates the resulting superimposed frequency spectra for the periods within
the range of 4 and 744 hours (1 month). The spectra of the top 100 networks
strongly overlap and have the largest common magnitudes for the periods of 24,
12, 8, 6, and 168 hours.

TV Viewership has historically been fairly stable in the long term; however,
there are certain global trends present. With the advent of digital media and
streaming platforms, TV ratings have been undergoing a steady decline for the
majority of networks that we forecast. We observed a 5% decrease in individual
daily viewership during the period of about 4.5 years as seen in Fig. 1. It is
reasonable to consider the trend to serve as a proxy for a decrease in national
TV viewership. On the other hand, certain networks might follow different local
trends. Overall, these trends have been analyzed in depth by K. Hubert [6].

3 Viewership Forecasting

Based on the domain knowledge, we have selected 5 better performing predic-
tors to forecast aggregate viewership: Baseline predictor that implements simple
seasonal averaging, Facebook’s Prophet that being an additive regression model
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extracts local trends, seasonality, and blends in important days and holidays,
Fourier extrapolation that deploys prior rigorous mean averaging, XGBoost that
performs gradient tree boosting, and Ensemble model that combines the predic-
tions of the 4 individual models.

3.1 Baseline predictor

Aggregated viewership data are known to have a strong seasonality and to be
relatively stable. Therefore, our Baseline model relies on a simple arithmetic
averaging of 8 time periods separated by a week (168 hours) from each other.
Every tth element in the model’s forecast ŷbt is calculated as

ŷbt =
1

8

8∑
i=1

xt−168i (3)

3.2 Facebook’s Prophet

TV viewership follows various periodic patterns that include yearly, weekly,
monthly or bimonthly seasonality as we have shown in section 2.2. However,
such patterns are interfered with holidays and various local trends.

Taylor and Letham of Facebook introduced the Prophet [18], a decomposable
time series model that incorporates a seasonal component, trends, customizable
holidays, and an error term:

ŷpt = g(t) + s(t) + h(t) + εt (4)

where g(t) models non-periodic changes in time series. Assuming that our data
do not have non-linear saturating trends, we employed linear trend with change-
points

g(t) =
(
k + a(t)T δ

)
t+
(
m+ a(t)T γ

)
(5)

where k is the growth rate, δ stands for rate adjustments, m is the offset param-
eter, a(t) is a vector of binary values with ones corresponding to the locations
of certain changepoints, and γ is included to make g(t) continuous.

Seasonal component s(t) is evaluated with standard Fourier series

s(t) =

N∑
n=1

[
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

)]
(6)

where P stands for the period and parameters an, bn are estimated. We extract
weekly and yearly seasonality with P = 7 and P = 365.25 correspondingly.

Holidays and special events term, h(t) contains supplementary regressors ini-
tially intended to be used for holidays. However, knowing detailed TV program
schedule in advance and assuming that more popular shows are to gain higher
viewership than less popular ones, we incorporate both: the information on hol-
idays and program schedules one-hot encoded into h(t).

Last term, εt represents the errors introduced by any unusual changes not
accounted for by the model.

The model as a whole is optimized maximizing a posteriori probability.



6 Who Watches What: forecasting viewership for the top 100 TV networks

Fig. 2. Normalized aggregated hourly viewership for 100 largest networks during the
March of 2018 superimposed

3.3 Fourier Extrapolation

Analyzing Fig. 2 and Fig. 3 we notice a very strong periodic pattern in viewing
behavior: on a large scale network viewership has a strong autocorrelation at
time lags of 24, 168, and about 1344 hours which correspond to a daily, weekly
and bimonthly periodicity in the time series. Strong periodic patterns assume
that a Fourier-based extrapolation might be able to capture the repetitions in
the signal and efficiently extrapolate it into the future.

However, due to the constant gradual change in the set-top box data: house-
holds join and leave the panel with their weights being adjusted; there might
appear certain unexpected jumps in the aggregated viewership (not to mention
rare hardly predictable events like Super Bowl).

In order to decrease the the negative effects of such viewership jumps, we
replace the original historical hourly viewership data with robust location values
calculated with Huber’s M-estimator [19] which is equivalent to an application
of a low-pass filter. We use 7 previous values that are 168 hours apart (weekly
seasonality) and minimize the objective function of robust location and scale:

argmin
µh,σh

7∑
i=1

ψ

([
xt−168i − µh

σh

]2)
(7)

ψ(z) = min (max(z,−c), c) (8)

where c is the threshold that limits the range of ψ, µh and σh stand for the robust
estimation of location and scale. In our experiments we found that c = 1.25
provides the most accurate seasonal averaging.
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Fig. 3. Spectra of FFT with Blackman window for the viewership of 100 largest net-
works during the March of 2018 superimposed

After filtering of the original time series we extrapolate it with the use of the
standard Fast Fourier Transform [4]. First, the magnitudes are calculated

Mk =

N∑
t=1

xte
− 2πi

N kt (9)

Then the extrapolation is evaluated with cosine for every tth value

ŷft =

N∑
k=1

<(Mk)

N
cos (2πωkt+ arg(Mk)) (10)

where ωk is the kth frequency corresponding to the magnitude Mk.
Experiments with various windows including Blackman, Hamming, and Parzen

[5] as well as zero-padding and detrending did not result in any significant im-
provement in the overall accuracy of the extrapolation.

3.4 XGBoost

XGBoost [20] is a tree boosting method that incorporates regularization and
a 2nd order approximation of the objective function to prevent overfitting and
reduce computation time. It allows for the use of an arbitrary objective function.

We combine the viewership data x = {x1, . . . , xN}, xt ∈ R with m features
X = {X1, . . . , XN}, Xt ∈ Rm that correspond to a specific network to obtain a
data set D = {(Xt, xt+τ )}N−τ1 in which some of the features Xt contain lagged
viewership xt with the maximal lag of τ , and the target is the viewership starting
at time period τ . A tree ensemble model is composed of K additive functions

x̂t+τ = φ(Xt) =

K∑
k=1

fk(Xt), fk ∈ F (11)
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where F = {f(X) = wq(X)} stands for the space of regression trees with fk
representing independent tree structure q with leaf weights w. The functions fk
are found through the regularized minimization of

L(φ) =
∑
j

l (x̂j , xj) +
∑
k

Ω(fk) (12)

where Ω(f) = γT + 1
2λ||w||

2, T is the number of leaves in a tree, and l de-
notes a convex differentiable loss function. The gradient boosting is performed
through the iterative additive optimization. Denoting the model’s prediction of

the viewership on the training set at tth time period at step i as x̂
(i)
t we minimize

L(i) =

N∑
t=τ

l
[
xt, x̂

(i−1)
t + fi(Xt−τ )

]
+Ω(fi) (13)

Finally, the model’s forecast is performed as

ŷx = φ∗(Y ) (14)

where Y stands for the features of the testing set and φ∗ is the trained tree
ensemble. The features we used included:

– Lagged viewership at time periods that represent the same Weekday and
Hour for different number of weeks in the past based on the seasonality of
the series calculated with Fourier Transform;

– Seasonally Averaged Lagged Viewership: averages over the past k weeks for
the same NDH (Network, Weekday, Hour). Since some NDHs are relatively
volatile, looking at the seasonal average decreases the variance and gives a
better prediction for the baseline trend. We also introduced the standard
deviation as a feature which prevented the model from overfitting caused by
outliers present throughout the 8-week period.

– Program Level Features. Since we were dealing with over 20000 programs,
this categorical variable posed many challenges. To solve this problem we
looked at the average number of impressions for the program and the network
in the past 8 weeks, and used that as a numeric feature. We can think of this
as an averaged lagged viewership feature for the programs. For certain future
programs we did not have actual program names so we also used features
like genre, and whether the program was live or repeated.

– Calendar Features: one-hot encoded important calendar days like Christmas.

Among the model’s limitations we identified that while the model did pick
certain special programs it did not perform well on extreme outliers (e.g. the
Superbowl). It is rather expected of the tree-based models, since the prediction
they make is an average of the prior predictions. More specialized models able
to automatically detect and remove outliers might provide better accuracy.

Furthermore, the tree-based models are known to be unable to capture trends.
As explored earlier, the viewership data seem to have a slowly decreasing trend
but this did not pose an issue with the XGBoost model: detrending of the time
series before training the XGBoost model did not offer significant improvements.
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3.5 Ensemble model

Quite a few researchers have demonstrated that ensemble models generate fore-
casts more accurate than individual models participating in the ensemble. Wen
Shen et al. [21] used an ensemble of 5 clustering techniques for electricity de-
mand forecasting. Taylor et al. [22] combined various modifications of ARMA
and GARCH models to improve the accuracy of wind power density forecasts.
Kourentzes et al. [23] concluded that an ensemble of neural networks outperforms
the best individual neural network model.

In our experiments we noticed that the errors produced by any two individual
models have a very weak correlation (see table 1) which could be explained by
the diversity of the models. Taking it into account, our ensemble model is in
essence a convex combination of the forecasts made by individual models:

ŷe = wbŷb + wxŷx + wpŷp + wf ŷf (15)

where wb + wx + wp + wf = 1, w. > 0 are the weights assigned to the models.

4 Evaluation

TV viewership data used in real business applications are characterized with
a slight processing delay which prohibits running next-day forecasting. Set-top
box data become available two weeks after the actual viewership. To take that
into account we separate training and testing data sets with a 2-week window.

In order to reduce bias in our models’ parameters we performed yearly cross-
validation training and testing. We selected 13 testing periods of 30 days from
March 1, 2017 to March 1, 2018 each starting in the beginning of the month. The
corresponding training sets were constructed from the viewership data collected
in a period within 1 year to 2 weeks prior the beginning of each testing period.

TV networks naturally have different sizes of their audiences and total hourly
viewership. To accurately measure average performance of our models on the
networks of different size, we used Symmetric Mean Absolute Percentage Error
(SMAPE). It is a common metric for relative forecasting accuracy evaluation
[24][25], and for every model’s forecast ŷ. it is defined as

SMAPE(ŷ.) =
1

N

N∑
t=1

2 |ŷ.t − yt|
ŷ.t + yt

(16)

where yt stands for actual values observed in the test set and ŷ.t is the forecast
made by either of the models: ŷb, ŷx, ŷp, ŷf , or ŷe. The metric fits naturally for

Prophet XGBoost Fourier
Prophet 1. 0.18166874 0.51658387
XGBoost 0.18166874 1. 0.13299841
Fourier 0.51658387 0.13299841 1.

Table 1. Correlation matrix of forecast errors
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Fig. 4. Mean SMAPE errors normalized with the Baseline

our task because the viewership time series have values xt, yt > 0 and we restrict
our model’s forecasts to ŷ.t > 0.

In table 2 we report the mean SMAPE errors for 100 top networks per testing
period per model normalized with the errors made by the Baseline model. The
errors are also visualized on Fig. 4.

The results of our experiments indicate that due to the presence of a very
dominant seasonal signal that has a period of about 8 weeks, the simple Baseline
model is on par with more complex predictors. XGBoost and Fourier Extrapo-
lation produced slightly less accurate forecasts with the mean SMAPE errors of
5% and 3% higher correspondingly. While Prophet performed marginally better
being 1% more accurate than the Baseline.

On the other hand, the Ensemble model demonstrated a significant improve-
ment in overall accuracy being about 11% better than the Baseline which can
be explained by a very weak correlation between the models’ forecasts.

5 Conclusion

As discussed in the introduction, US TV viewing is undergoing a change, as more
fragmentation occurs due to consumer choice. This places a focus on having a
robust forecast that can handle smaller network feeds or streams with higher
variation. We have undergone a study to pull together these methodologies,
and have found that ensemble is a powerful way of reducing the overfitting of
individual models.

While we have predicted ratings based solely on the viewing behavior ex-
hibited prior to the broadcast, further research should focus on additional ex-
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ternalities that may impact movement of viewers through content. Indeed, as
found in [6], individual networks have differing trends, this combined with people
watching fewer networks consistently means correlative effects may be observed.
Another potential direction could include bias reduction in the models’ forecasts.
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