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Predicting Taxi and Uber Demand in Cities:
Approaching the Limit of Predictability

Kai Zhao, Denis Khryashchev, Huy Vo

Abstract—Time series prediction has wide applications ranging from stock price prediction, product demand estimation to economic
forecasting. In this paper, we treat the taxi and Uber demand in each location as a time series, and reduce the taxi and Uber demand
prediction problem to a time series prediction problem. We answer two key questions in this area. First, time series have different
temporal regularity. Some are easy to be predicted and others are not. Given a predictive algorithm such as LSTM (deep learning) or
ARIMA (time series), what is the maximum prediction accuracy that it can reach if it captures all the temporal patterns of that time
series? Second, given the maximum predictability, which algorithm could approach the upper bound in terms of prediction accuracy?
To answer these two question, we use temporal-correlated entropy to measure the time series regularity and obtain the maximum
predictability. Testing with 14 million data samples, we find that the deep learning algorithm is not always the best algorithm for
prediction. When the time series has a high predictability a simple Markov prediction algorithm (training time 0.5s) could outperform a
deep learning algorithm (training time 6 hours). The predictability can help determine which predictor to use in terms of the accuracy
and computational costs. We also find that the Uber demand is easier to be predicted compared the taxi demand due to different
cruising strategies as the former is demand driven with higher temporal regularity.

Index Terms—sharing economy; deep learning; predictive algorithm; predictability of time-series; data mining
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1 INTRODUCTION

Traditional taxi systems in cities often suffer from ineffi-
ciencies due to uncoordinated actions as customer demand
changes [1]. In some areas passengers experience long waits
for a taxi, while in others, many taxis roam without riders.
This leads to profit loss for taxi drivers, since vehicles are
vacant when there is demand. Moreover, it reduces the level
of passenger satisfaction because of the long wait times. The
ability to predict taxi and Uber demand can help address the
taxi-service inefficiency problem. With the deployment of
the networked sensors and the widely used mobile phones
in taxis, large amounts of information including location,
time, number of passengers, weather, traffic, etc. can be col-
lected in real time. This information provides opportunities
to build an intelligent transportation system that is able to
control and coordinate taxis at large scale and bring benefits
to both taxi drivers and companies: taxi drivers can drive
to high taxi demand areas, and ride-sharing companies (e.g.
Uber) may re-allocate their vehicles using the surge pricing
in advance to meet the passenger demand.

Recent studies have shown that the passenger demand
information can be used in the taxi dispatch system to
reduce passenger waiting time, taxi cruising time, or supply
re-balancing cost [2], [3], [4]. In this paper we only study
the taxi and Uber demand prediction problem. The design
of the taxi dispatch system has been widely studied in the
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transportation and the operation research area and is not
considered here. E.g., it has been found that with the taxi
demand prediction component, the taxi dispatch system can
reduce the average total taxi idle distance by 52%, and the
supply demand error by 45% [5].

We define the taxi demand prediction problem as fol-
lows: given historical taxi demand data in a region, we want
to predict the number of taxis that will emerge within the next
time interval. Inspired by previous works [6], [2], [7], [8],
[9], [10], we aim to predict the met taxi demand. We use the
number of pick-ups as a representation of the taxi demand
in a region, and treat them as time series data (see Fig. 1).
Our method is general and can also be applied to predict
the unmet taxi demand. As we discuss in Section 7.2, unmet
demand can be inferred from the met taxi demand [11], [12].
In a recent report by the Taxi and Limousine Commission
(TLC) [13], the agency that is responsible for regulating for-
hire vehicles in New York City (NYC), there is a strong
correlation of the socioeconomic impact to the taxi demand
at various governing zones such as building blocks. As such,
we elect to study our technique at the building block level.

Many methods have been proposed to predict taxi de-
mand, including uncertainty analysis [6], probabilistic mod-
els [9], time series (ARIMA) [7], [8], SVM [2], and deep
learning (LSTM) [14]. However, to apply these methods, we
must answer two key questions:

• First, given a predictive algorithm such as LSTM or
ARIMA, what is the maximum prediction accuracy
that it can reach if it captures all the temporal pat-
terns of that taxi/Uber demand time series?

• Second, given the maximum predictability, which
algorithm could approach the upper bound in terms
of prediction accuracy?
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In this paper, we answer these questions by analyzing
the maximum predictability (Πmax) of taxi demand in a region
to select the best predictor. The maximum predictability
is defined by the entropy of the taxi demand time series,
considering both the randomness and the temporal correlation.
Maximum predictability Πmax was first introduced by Song
et. al for analyzing user mobility [15]. Here, we define the
maximum predictability Πmax as the highest potential accu-
racy of a taxi demand forecast that any predictive algorithm
can reach.

The maximum predictability captures the degree of tem-
poral correlation of the taxi demand time series by mea-
suring the regularity of human mobility. For most regions,
the taxi demand is governed by a certain amount of ran-
domness (e.g. irregular events, basketball match) and some
degree of regularity (e.g. weekly patterns, peak during 4-
5pm weekdays), which can be exploited for prediction. For
example, a building block with Πmax = 0.8 indicates that for
about 20% of the time the taxi demand of this block appears
to be totally random. In other words, no matter how good
the predictive algorithm is, we cannot forecast the future
taxi demand for a building block with Πmax = 0.8 with
an accuracy that is higher than 80%. Πmax represents the
fundamental limit for predictability of the taxi demand. The
Πmax is a value between 0 and 1, the higher the more regular
will the taxi demand be.

Previous work assumed that the maximum predictability
(the degree of the temporal correlation) in different regions
is the same, and proposed the use of a single predictive
algorithm for all regions [7]. However, the strong tem-
poral correlation of taxi demand does not always hold.
Different regions have different functions and thus different
predictabilities (see Section 5.2). Fig. 1 shows the hourly
taxi demand for two building blocks in NYC. The taxi
demand near the Metropolitan Museum of Art (MoMA)
(Fig. 1 top) exhibits a strong temporal pattern. The regular
peaks in MoMA happen during the weekends (especially
after the closing time): people usually visit museums during
weekends and leave after the closing time. In contrast, the
taxi demand near the west port (Fig. 1 below) appears to
be more random. There is no clear temporal pattern near
the west port. This is because the taxi demand in a trans-
portation hub such as the west port is heavily dependent on
the arrival of ships and there is a high variability in their
arrival times [16]. In fact, the taxi demand near MoMA has
one of the highest predictabilities among all the building
blocks in NYC, and the taxi demand near the west port
has one of the lowest. Intuitively we should use different
predictors forecasting the taxi demand in these two building
blocks. For MoMA it is better to use a predictor that is
able to capture the temporal correlation, for example, a
Markov predictor. For the west port, a predictor that uses
machine learning and can capture exogenous features such
as the ship schedule may be more effective. We posit that
to select the best predictor, we must analyze the maximum
predictability (Πmax) of the taxi demand in each region.

In this paper we make three key contributions:

• We measure the theoretical maximum predictability1

1. The code for calculating the maximum predictability can be found
here: https://github.com/bdilab/Predictability
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Fig. 1. Heterogeneous taxi demand time series in two building blocks:
(top) a dense traffic area around the Metropolitan Museum of Art; and
(bottom) a more open traffic area near the west port in NYC.

of the taxi demand for each building block in NYC.
This represents the upper bound of the potential
accuracy that a predictive algorithm α can reach.
We show that the maximum predictability of the
taxi demand can reach up to 83% on average cap-
turing the degree of the temporal correlation of a
taxi demand time series. Our findings indicate that
taxi demand in NYC incorporates strong temporal
patterns. We also find that the Uber demand is easier
to be predicted compared the taxi demand due to
different cruising strategies as the former is demand
driven with higher temporal regularity.

• We implement and compare the prediction accuracy
of five commonly used and representative predic-
tors and examine their performance under different
maximum predictability: the Markov (probability-
based) [17], the Lempel-Ziv-Welch (LZW) (sequence
modeling) [18], the auto-regressive integrated mov-
ing average (ARIMA) model (time series forecast-
ing) [19], the Neural Network (NN) (machine learn-
ing) [10], and the Long Short-Term Memory (LSTM)
(deep learning) [20]. Our results indicate that the
maximum predictability is an approachable target for
the actual prediction accuracy.

• We observe that the LSTM predictors provides better
accuracy for building blocks with low predictability
(Πmax < 0.83) by capturing hidden long-term tem-
poral dependency, while the Markov predictor pro-
vides better accuracy for building blocks with high
predictability (Πmax > 0.83). A compute-intensive
deep learning predictor does not always outperform
a simpler Markov predictor, while the latter requires
only 0.02% computation time. Knowledge of the
predictability can help determine which predictor to
use in terms of the accuracy and computational costs.
Using a third time-series data set, we show that our
finding is general and can be applied to other time-
series data sets.

The remainder of this paper is organized as follows.
Section II presents how we obtain the maximum predictabil-
ity Πmax. Section III describes the five approaches we im-
plemented for predicting taxi demand. In Section IV we
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introduce the data sets we use in this paper and how
we preprocess these data. We analyse the taxi demand
predictability in Section V. In Section VI we compare the
performance of the five predictive algorithms and show that
predictability provides an effective measure for selecting
appropriate prediction methods. Related work is addressed
in Section VII. In Section VIII we discuss the impact of the
spatial resolution on the prediction accuracy and generality
of our findings. We conclude with Section VIII.

2 PREDICTABILITY OF TAXI DEMAND

In this section we formally define maximum predictability
Πmax. Our goal is to solve the following problem:

Problem 1. Given any predictive algorithm α and a sequence
of taxi demand D(i)

n for time steps 1, 2, . . . n at a building block
i, considering both the randomness and the temporal correlation
of the taxi demand, find the maximum predictability (the highest
potential accuracy) Πmax that a predictive algorithm α can reach.

2.1 Taxi Demand
We use the number of taxi pick-ups d(i)

t to represent taxi
demand at building block i at time step t (1 ≤ i ≤ m and
1 ≤ t ≤ n). For a given building block i, we have a sequence
of the historical taxi demandD(i)

n = d
(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n . Note

that here D(i)
n represents taxi demand for time steps 1 . . . n.

For example, D(i)
n = 2, 1, 2, 2 indicates that for block i, at

time step 1 there were 2 pickups, at time step 2 there were
1 pickup, and so on. Table 1 summarizes the mathematical
notation and main symbols used in the paper.

We only consider the total hourly pick-ups at each build-
ing block as time series and our goal is to predict the next
hour pick-ups. We did not consider the problem of location
recommendation in our paper.

Due to the high variability in taxi demand, it is hard to
predict the exact value for d(i)

t . To improve the performance
of sequential predictors like Markov chain or LZW, we bin
every value of the taxi demand in the corresponding range:
pq ≤ d

(i)
t < (p + 1)q where p and q are some natural

numbers. We replace the original value of d(i)
t with the value

pq and predict the rounded taxi demand. For example, if
q = 10 and observed taxi demand d

(i)
t = 621, we assign it

a new value of 620, for it is in the range 620 ≤ d
(i)
t < 630.

After a few tests, we found q = 10 to make the prediction
more relaxed while keeping the errors low. The effect of q
on Πmax is shown in Appendix E.

2.2 Entropy
Entropy is an effective measure to characterize the degree
of predictability. In general, low entropy corresponds to the
higher predictability. We use three measures of entropy: the
random entropy S

(i)
random, the Shannon entropy S

(i)
Shannon,

and the real entropy S(i)
real [21].

2.2.1 Random Entropy
S

(i)
random = log2N

(i) (1)

Here N (i) is the number of unique values in the taxi
demand time series D

(i)
n , e.g. for D

(1)
4 = 2, 1, 2, 2, we

Symbol Meaning

d
(i)
t

Taxi demand at the building block i at time t.

X
(i)
t

Taxi demand as a random variable.

D
(i)
n

The historical taxi demand time series,
d
(i)
1 d

(i)
2 . . . d

(i)
n .

N(i) Number of distinct values of the taxi demand at the
building block i.

S
(i)
n Time-ordered subsequence S(i)

n , S(i)
n ⊂ D(i)

n .

S
′(i)
t

Length of the shortest unseen subsequence starting at
time t.

S
(i)
random Random entropy of D(i)

n .

S
(i)
Shannon Shannon entropy of D(i)

n .

S
(i)
real Real entropy of D(i)

n .

Π Predictability of an arbitrary predictive algorithm α.

Πmax Upper bound of predictability Π, Π ≤ Πmax.

TABLE 1
Mathematical notation and symbols used throughout the paper

have N (1) = 2. The lower number of unique values N (i)

translates into the lower random entropy S(i)
random meaning

that there are more repetitions in the sequence D(i)
n making

it more predictable. However, random entropy does not take
temporal order in D(i)

n into account.

2.2.2 Shannon Entropy

S
(i)
Shannon = −

N(i)∑
j=1

p(d
(i)
j )log2p(d

(i)
j ) (2)

Here p(d
(i)
j ) is the probability that the taxi demand

at the building block i is equal to d
(i)
j , j represents the

indices in the set of all unique values of taxi demand in
D

(i)
n . Note that similar to the random entropy, Shannon

entropy does not consider temporal patterns. For example,
given two sequences of taxi demand D

(1)
4 = 2, 1, 2, 2 and

D
(2)
4 = 1, 2, 2, 2, we have the values of random and Shannon

entropy S(1)
random = S

(2)
random and S(1)

Shannon = S
(2)
Shannon.

2.2.3 Real Entropy

S
(i)
real = −

∑
S

(i)
n ⊂D(i)

n

P (S(i)
n )log2[P (S(i)

n )] (3)

P (S
(i)
n ) represents the probability of finding a particular

time-ordered subsequence S(i)
n in the taxi demand time se-

ries D(i)
n . Unlike Shannon entropy and random entropy, the

real entropy considers both the probabilities of the values in
taxi demand time series and their temporal order [21].

The problem of finding all the subsets of a given set
has exponential computational complexity (O(2n)). We use
the approximation proposed by Lempel and Ziv [22] that
rapidly converges to the value of the real entropy. For a taxi
demand time series of size n, the Lempel-Ziv approximation
of real entropy is defined as
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S
(i)
real ≈

( 1

n

∑
t

s
′(i)
t

)−1

lnn (4)

Here, s′(i)t represents the length of the shortest subse-
quence that starts at the time t and does not appear from
time period 1 to t− 1.

To illustrate that real entropy S
(i)
real captures temporal

regularity in sequences we compare two sequences of taxi
demand D(1)

10 of building block 1:

10, 20, 10, 20, 10, 20, 10, 20, 10, 20

and D(2)
10 of building block 2:

20, 10, 10, 20, 20, 20, 10, 10, 20, 10.

Both sequences contain only 2 unique values: 10 and 20.
Each value appears with a probability of 50% leading to
the same mean value of 15 and a standard deviation of 5
for both sequences. Their values of the Shannon and the
random entropy are equal as well:

S
(1)
random = S

(2)
random = S

(1)
Shannon = S

(2)
Shannon = 1.0

Yet, time series D(1)
10 is quite regular, knowing that the

current value is 10 allows one to predict with certainty
that the next values will be 20. Time series D(2)

10 is more
unpredictable and does not exhibit a temporal pattern that
could be put to use for its forecasting.

The real entropy is able to quantify the difference in
terms of temporal regularity between these two sequences.
The the real entropy for D(1)

10 is 0.82 while for D(2)
10 it is

1.00, indicating a lower real entropy and a higher temporal
regularity for the taxi demand time series D(1)

10 , which is
easier to be predicted.

2.3 Maximum Predictability Πmax

We define the predictability Π as the success rate of correct
predictions of future taxi demand made with the algorithm
α. The predictability measure Π associated with every build-
ing block i is subject to the Fano’s inequality, Π ≤ Πmax

[15]. Given the value of entropy S and the number N (i)

of distinct values in taxi demand time series at a building
block i, the maximum predictability Πmax is defined by the
following equation:

S = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+(1−Πmax)log2(N (i) − 1) (5)

If a location has entropy S = 0, then this location’s
taxi demand is completely regular and thus the it is fully
predictable. If, however, a location entropy S = Srandom =
log2N , then its taxi demand is expected to follow a totally
random pattern and thus we cannot forecast it with accuracy
that exceeds 1/N . Most locations have a finite entropy
laying between 0 and Srandom, indicating not only that a
certain amount of random events governs their future taxi
demand, but also that there is some regularity in their taxi
demand that can be exploited for predictive purposes.

The maximum predictability Πmax takes values in range
[0, 1]. The larger the value, the bigger forecasting accuracy

can be achieved with the algorithm α. We quantify the limits
of predictability of a location’s taxi demand based on its
taxi demand history. We answered the following question:
how predictable is a locationss taxi demand at next time
interval given the entropy of its history? We use a version of
Fanos inequality to relate the upper bound of predictability
to the entropy of a locations past history of taxi demand. A
full proof of the predictability upper bound Πmax, which is
inspired by the proof from Song et al. [15], is provided in
the Appendix.

With different entropy measures, S(i)
random, S(i)

Shannon

and S
(i)
real, we have different measures of maximum pre-

dictability: Πrandom, ΠShannon and Πreal. Since S(i)
random ≥

S
(i)
Shannon ≥ S

(i)
real, it has been proven that Πrandom ≤

ΠShannon ≤ Πreal [15], making Πreal the most accurate ap-
proximation of maximum predictability Πmax. Thus Πreal is
Πmax in our paper. Now, calculating the value of Πreal, we
can answer the problem proposed in the beginning of the
section: given a predictive algorithm α, find the maximum
predictability Πmax that the predictive algorithm α can
reach. The detailed analysis of the maximum predictability
of each building blocks in NYC can be found in Section 5.

Fig. 2. Property of the maximum predictability. Three cases with and one
case without solutions: N(i) > 2S , S → 0, N(i) = 2S , N(i) < 2S .

2.4 Scalability
In this section, we provide a scalable algorithm (see Ap-
pendix Alg. 1) for calculating the maximum predictability
Πmax using the properties derived in Appendix D. Cur-
rently Matlab solver is the only existing method we can
find to calculate the maximum predictability [15]. We find
that it is extremely slow and not scalable. We examine the
properties of the maximum predictability and provide an
efficient algorithm to calculate the maximum predictability.

The maximum predictability Πmax can be obtained by
solving Equation 5. We move S to the right side of the
equation, and we define the function

f(Πmax) = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+(1−Πmax)log2(N (i) − 1)− S
(6)

Since Πmax is a value between 0 and 1, finding the
intersection when f(Πmax) = 0 can solve the equation
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with Πmax = γ given the values of N (i) and S. We use
Householder’s method [23] and apply 4 lemmas (proven in
the Appendix D) to decrease the overall computation time
(see Appendix Alg. 1):

LEMMA 2. f(Πmax) = 0 has no solutions if N (i) < 2S .
LEMMA 3. f(Πmax) = 0 has exactly one solution if N (i) =

2S and the solution is 1
N(i) .

LEMMA 4. f(Πmax) = 0 has at most two solutions ifN (i) >
2S and the biggest solution is in

(
1

N(i) , 1
)
.

LEMMA 5. If S → 0, the solution to f(Πmax) = 0
approaches 1.

Fig. 2 shows the shapes that the function f(Πmax) takes
in accordance with the lemmas. Since both S(i) and N (i)

are known numbers for a building block i, the computation
time of solving all the equation f(Πmax) = 0 is O(m),
where m is the total number of building blocks. We can
scale by distributing the computation of f(Πmax) = 0 for
each building block over multiple processors.

To test the performance of our scalable algorithm, we
implement a Matlab solver (R2016a, The MathWorks) for
solving the same maximum predictability equation. To the
best of our knowledge, the solver uses Dekker’s algorithm
[24] which should converge within log2

2((b − a)/δ) [25]
function evaluations for the values of its argument in [a, b]
and error tolerance δ. In our case it is log2

2(1/δ) for we have
0 ≤ Πmax ≤ 1. For example, if we set δ = 10−8, it will
require 700+ function evaluations to find the zeros of (6).

Our algorithm relies on the Householder’s method of
order 2, and has a cubic rate of convergence in the worst
case. Our initial guess is Πmax = (N (i) + 1)/(2N (i)) based
on lemma 4 (see line 19 of Appendix Alg. 1) allows us to find
the solution even faster. In special cases (lemmas 1-5) we
can find the solution in constant time. Given the accuracy
parameter, the worst-case number of iterations is log log
(1/accuracy). For accuracy of up to 10−16, the algorithm
converges within 10 iterations. Overall, in practical applica-
tions it takes less than 30 function evaluations to calculate
the value of Πmax with Appendix Alg. 1.

Experimentally we observe that our algorithm is 2 orders
of magnitude faster (about 200 times) than the Matlab solver
while solving the same tasks (seconds vs hours), which
verifies the efficiency of our algorithm.

3 PREDICTORS

We employ five predictors: the Markov chain (probability-
based) [17], the LZW (sequence modeling) [18], ARIMA [19]
(time series forecasting), Neural Network (machine learn-
ing) [10], and LSTM (deep recurrent neural network) [20]
for predicting the taxi demand, and compare their per-
formances given the value of the maximum predictability
Πmax that quantifies temporal regularity of the series.

In this section, we answer the following question:

Problem 2. Given the maximum predictability Πmax for a
building block i, we want to find the predictor that is more
efficient in terms of the trade-off between its computation time
and forecasting accuracy.

3.1 Markov chain Predictor
We propose the order-k O(k) Markov chain predictor [26]
to forecast the future taxi demand from the subsequence

of k most recent observed values d(i)
n−k+1, d

(i)
n−k+2, . . . , d

(i)
n .

The key idea of Markov predictor is to find the
value β that has the highest probability to follow
the sequence of the last k values observed in the
time series. For example, consider taxi demand series
{1, 1, 2, 2, 0, 1, 1, 2, 2, 3, 1, 1, 2, 2, 0, 1, 1, 2, 2} that contains a
repeating subsequence {1, 1, 2, 2, 0} and a noisy value at
10th position (3 instead of expected 0). Markov chain pre-
dictor of order 5 will look for historical occurrences of
subsequence {1, 1, 2, 2} and will evaluate two probabilities:
P (0|{1, 1, 2, 2}) = 2/3 and P (3|{1, 1, 2, 2}) = 1/3. Clearly,
0 following {1, 1, 2, 2} has a higher probability and it will
be selected as a future value of taxi demand β̂.

More formally, we denote the taxi demand during time
period t at the building block i as X(i)

t . Let X(i)
(t,t+k) denote

the sequences of taxi demand that start at time t and end at
time t + k: X(i)

t , X
(i)
t+1, X

(i)
t+2, . . . , X

(i)
t+k for 1 ≤ t ≤ n − k.

Considering the location i that has a taxi demand history
D

(i)
n = d

(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n with N (i) unique values as shown

in Section 2.1, and following Markov assumption we have

P
(
X

(i)
n+1 = β

∣∣X(i)
n = D(i)

n

)
= P

(
X

(i)
n+1 = β

∣∣X(i)
n−k+1,n = c

)
= P

(
X

(i)
t+k+1 = β

∣∣X(i)
t+1,t+k = c

)
Here P

(
X

(i)
n+1 = β

∣∣X(i)
n = D

(i)
n

)
means that there is

a demand for β taxis at the building block i during
the time interval n + 1. c is a repeating subsequence
of taxi demand within D

(i)
n , i.e. d(i)

n−k+1d
(i)
n−k+2 . . . d

(i)
n =

d
(i)
t+1d

(i)
t+2 . . . d

(i)
t+k = c. We propose a transition prob-

ability matrix T as the Markov chain predictor (see
Appendix Alg. 5) with its rows and columns rep-
resenting the taxi demand time seriess of length k.
Each element Tc,c′ in the matrix represents the pre-
diction Tc,c′ = P

(
X

(i)
n+1 = β

∣∣X(i)
n = D

(i)
n

)
, where c =

d
(i)
n−k+1d

(i)
n−k+2 . . . d

(i)
n and c′ = d

(i)
n−k+2d

(i)
n−k+3 . . . d

(i)
n β.

The matrix T provides the immediate probability
P
(
X

(i)
n+1 = β

∣∣X(i)
n = D

(i)
n

)
of the future taxi demand of β

following the observed sequence D(i)
n .

As T is unknown, we define an estimate probability P ′

from the taxi demand history D(i)
n as

P ′
(
X

(i)
n+1 = β

∣∣X(i)
n = D(i)

n

)
=
C
(
cβ,D

(i)
n

)
C
(
c,D

(i)
n

) (7)

Here
C(cβ,D(i)

n )
C
(
c,D

(i)
n

) is the probability of observing the sub-

sequence c followed by β in the observed taxi demand D(i)
n ,

C
(
c,D

(i)
n

)
stands for the number of time subsequence c

occurred in D(i)
n .

The formula allows us to estimate the future taxi demand
at the the building block i given the order-k O(k) Markov
chain predictor matrix T . In Appendix Alg. 5 we choose
the β with the highest estimated probability P

′
given the
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matrix T . Note that the Markov chain predictor might
return an empty value given the recent taxi demand time
series c. This is due to the fact that in the observed taxi
demand history subsequence d(i)

n−k+1d
(i)
n−k+2 . . . d

(i)
n = c did

not occur. In this case, we return the taxi demand with
highest probability in D(i)

n . We set k = 3 here to improve the
prediction accuracy while reducing the computation time
(see Section 6.2).

It is easy to maintain and update the Markov chain
predictor matrix T in Appendix Alg. 5. The predictor scans
the matrix T at row c and picks the next taxi demand with
the highest probability as its forecast. Then it updates the
row with the forecast. Note that here T is a c′×N (i) matrix,
c′ is the number of unique subsequences in D(i)

n .

3.2 Lempel-Ziv-Welch Predictor

The LZW predictor is based on the Lempel-Ziv-Welch text
encoding algorithm (LZW algorithm). The predictor relies
on building a tree of the shortest subsequences that have
not been observed by time t. Then the prediction is made
based on the probability of observing a value β following
the shortest subsequences. For example, for taxi demand
series {1, 1, 2, 1, 1, 2, 1, 3, 2} LZW will evaluate probability
of a value following the shortest subsequence matching
the most recent values of the series: 2 being the shortest
subsequence at t = 3 was followed by 1 after {1, 1, 2}, i.e. 1
will be the predicted value with probability 1.

In detail, given a taxi demand time series D(i)
n , LZW

algorithm partitions D(i)
n into a set of distinct subsequences{

s
(i)
0 , s

(i)
1 , s

(i)
2 , s

(i)
3 , . . . s

(i)
m

}
, where s(i)

t represents the short-
est subsequence that starts at the time interval t and does
not appear up until t − 1 (see Appendix Alg. 2). For exam-
ple, in Figure S1 (see Appendix) the taxi demand history
D

(i)
n = {1, 1, 2, 1, 1, 2, 1, 3, 2} can be parsed into the set
{1, 2, 3, 11, 12, 21, 121, 13, 32} by LZW algorithm.

We build a LZW tree to maintain the LZW predictor
(see Appendix Alg. 2). The tree grows dynamically parsing
the taxi demand history D

(i)
n . The root of the tree is an

empty list. All immediate children of the root node represent
taxi demand subsequences s(i)

t of length 1, e.g. 1, 2, 3. Each
child node of the root combined with each of its immediate
children nodes represent taxi demand subsequences s

(i)
t

of length 2, e.g. 11, 12, 13, 21, 32, and so on. Every node
also records information about the number of times the
subsequence of its parents and itself s(i)

t occurred in D(i),
e.g. 1 occurred 4 times, 2 occurred twice, 12 occurred twice
and so on. Denoting the taxi demand at time period t at the
building block i as a random variable X(i)

t , we define the
LZW predictor as:

P
(
X

(i)
n+1 = β

∣∣D(i)
n

)
=
NLZ

(
s

(i)
m β,D

(i)
n

)
NLZ

(
s

(i)
m , D

(i)
n

) (8)

Similarly to Markov chain predictor, here
NLZ(s(i)m β,D(i)

n )
NLZ

(
s
(i)
m ,D

(i)
n

)
represents the probability that the subsequence s(i)

m β occurs
in D

(i)
n calculated as the number of times the subsequence

s
(i)
m preceded β divided by the total number of times it

was observed. While the Markov chain predictor considers
how often a subsequence of interest occurs in the entire taxi
demand time series D(i)

n , the LZW predictor only considers
the occurrences of the shortest subsequences s(i)

t observed
at time t.

3.3 Neural Network Predictor
The Neural Network (NN) predictor we employ (see Ap-
pendix Alg. 3) consists of two layers with sigmoid and
softmax activation functions [27] (see Figure S2 in Ap-
pendix). We adopt the same exogenous input data, i.e.,
”temperature”, ”precipitation”, ”wind speed”, ”day of the
week”, and ”hour of the day” that we used in our previous
research for predicting taxi demand [10]. Each of the hidden
layers contains K neurons with the output calculated as

Sj

(∑
k

w
(j)
k x

(i)
k + b(j)

)
(9)

Here j ∈ {1, 2} enumerates the hidden layers, k iterates
over the K neurons of a hidden layer, w(j)

i represents the
layer’s weights, b(j) stands for the layer’s bias, Sj is an
activation function, and x

(i)
k denotes the input that is com-

posed of the values of taxi demand d
(i)
t combined with the

exogenous variables. When the neural network is trained,
the predicted value of future taxi demand β is linearly
combined with m previous values of observed taxi demand
{d(i)
n−m, dn−m+1, . . . , d

(i)
n } using the Gaussian kernel

β
′

=
1√
2πσ

(
β +

m∑
t=1

d
(i)
n−te

−(n−t)2

2σ2

)
(10)

where β
′

stands for the final prediction made by the Neural
Network predictor.

One of the characteristics of Neural Network based pre-
dictors is the vast number of parameters and hyperparam-
eters to optimize. Among the most important parameters
are the number of layers and neurons per layer. Experi-
menting with the number of layers between 1 and 4 we
did not acquire a significant decrease of the mean squared
error having the number of layers bigger than 2, while the
execution time increased significantly.

Having selected 2 hidden layers, we run experiments
with the number of neurons per layer that varied between 10
and 100 in steps of 15. Mean sMAPE errors (See Section 6.1
Experiment Setup) given K neurons per layer are shown on
Supplementary Fig S3. We found 55 neurons to be optimal.
We used Yellow Taxi dataset to find the optimal number of
neurons in the following manner:

1) Sort taxi demand series D(i)
n based on the value of

maximum predictability Πmax and bin them into 10
bins: 0 ≤ Πmax < 0.1, 0.1 ≤ Πmax < 0.2, . . . ,
0.9 ≤ Πmax ≤ 1. Within every bin select 10 time
series that have the average values of Πmax;

2) Use the first 80% of the values of every selected
taxi demand time series for the training set, and the
last 20% for the test set. Train the Neural Network
predictor with K neurons on the training set.



7

3) Select the number of neurons K that has the lowest
mean sMAPE error on the test set.

3.4 ARIMA Predictor
The fourth predictor that we incorporate in our frame-
work is the ARIMA model [19]. We use ARIMA as a
representative of the time-series predictor here and test its
performance under different levels of predictability. The
model consists of three parts: auto-regression, integration,
and moving average. For example, given taxi demand se-
ries {1, 1, 2, 2, 0, 1, 1, 2, 2, 3, 1, 1, 2, 2, 0, 1, 1, 2, 2} we can fit a
model consisting of auto-regression, integration, and mov-
ing average of order 1: d(i)

t = 0.016 + 1.14 · d(i)
t−1 that will

effectively predict β̂ = 1.62.
Order of the model can be denoted as ARIMA(p, d, q),

where p is the number of auto-regressive terms, d is the
number of nonseasonal differences (integration) that intro-
duce nonstationarity when d 6= 0, and q is the number of
error terms (moving-average). The details of the ARIMA
model can be found in the Appendix A.1 ARIMA.

A standard way to identify the proper order of the
model is to the Akaike Information Criterion (AIC) [28]. The
optimal model ARIMA(p, d, q) is selected as the one that has
the lowest AIC coefficient compared with the other orders
considered. To improve the prediction accuracy and de-
crease the number of overall iterations, one might consider
relating the choice of the parameters p and q with the inverse
frequencies of largest magnitudes in the frequency spectrum
of the original time series X . Alternative approaches to
select the parameters (p, d, q) minimize

∑N
i=1 ε

2
i .

To improve the prediction accuracy and decrease the
number of overall iterations, we choose each of the param-
eters, p and q from the set {1, 2, 4, 8, 12, 24} that represents
the periods (1/frequencies) of the Fourier Transformation
that have the highest magnitudes (see Section 6.2). The
general logic of the ARIMA predictor that we use for taxi
demand forecasting is shown in Appendix Algorithm 4.

3.5 LSTM Predictor
LSTM [20] is a Recurrent Neural Network designed specif-
ically for modeling sequential and time series data as it
can capture long-term dependency. It has been found that
LSTM outperforms other commonly used predictors when
predicting real-time taxi demand in cities [14]. To test how
LSTM performs under different predictability comparing to
other predictors we implement a LSTM predictor in our
settings. We design our LSTM model as follows:

We used a standard LSTM model as shown in Supple-
mentary Fig. S4. D(i)

n stand for the inputs, hn is an output
of the nth cell, ⊗, ⊕, and tanh inside an ellipse represent
pointwise multiplication, addition, and application of tanh
correspondingly. σ and tanh inside rectangles denote stan-
dard neural network layers (neurons) with sigmoid and
hyperbolic tangent activation functions.

The inputs for the model enter LSTM cells that contain
3 gates within their structure: input, output, and forget. The
details of the LSTM model can be found in the Appendix
A.2 LSTM. We optimize the number of layers and lags (how
many time steps to account for) for our LSTM model. We

sampled 10 series from the Yellow Taxi dataset with various
maximum predictability values. We trained LSTM models
with 2 to 4 layers and 2 to 10 lags for every of the selected
time series. As our parameters we picked a model with 2
layers and a lag size of 2 for the model had the lowest mean
prediction errors.

4 DATA SETS AND PREPROCESSING

In this section, we introduce the data sets we used in this
paper and how we preprocess the data. We use the NYC
yellow taxi data set, the NYC Uber taxi data set, and the
NYC land use data set. These data sets provide a good
coverage of the city with respect to both space and time.

4.1 Data Sets

NYC Yellow Taxi NYC Uber

Measurement GPS GPS

Number of samples 13,813,031 663,845

Time June, 2014 June, 2014

Accuracy 3 m 3 m

Number of participants 13,237 Unknown

TABLE 2
The New York City Taxi and Uber Data sets

Taxi data. The NYC yellow taxi data set is a public data set
provided by the Taxi and Limousine Commission (TLC) 2. It
includes trip records from all trips completed in yellow taxis
in NYC in June, 2014. Each trip record contains pick-up and
drop-off time, pick-up and drop-off locations, trip distances,
itemized fares, and driver-reported passenger counts. The
data was recorded through meters installed in each taxi. In
total we have 13,813,031 taxi pick-up records from 13,237
yellow taxis.

The NYC Uber data set is a public data set provided
by the TLC 3. This data set contains 663,845 Uber pick-up
records in June 2014, about 4.8% of the total yellow taxi
pick-ups in NYC. The key information provided by these
data sets is summarized in Table 2. We extract the following
information from the data set: taxi id, pickup time and the
corresponding pick-up location (building block).
Land use data. We use the NYC PLUTO (Primary Land Use
Tax Lot Output) data set to map the yellow taxi GPS points
to the associated building blocks and provide the land
use information for each building block [29]. The PLUTO
data set is an extensive land use and geographic data set
provided by NYC Department of City Planning. It contains
detailed information about every piece of land in the city,
including year built, number of units, and lot size. Since
the Uber data set is very sparse (only 4.8% of the total
yellow taxi pick-ups), we use the NYC neighborhood data
set [29], and map the Uber pick-up records with associated
the neighborhoods instead of building blocks.

2. http://www.nyc.gov/html/tlc
3. https://github.com/fivethirtyeight/uber-tlc-foil-response
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(a) Entropy (Hourly) (b) Predictability (Hourly) (c) Entropy (Daily) (d) Predictability (Daily)

Fig. 3. Distribution of (a) Hourly Entropy, (b) Hourly Predictability, (c) Daily Entropy, and (d) Daily Predictability of the taxi demand over all building
blocks. The red line, the green line and the blue line refer to the probability density function of S(i)

real, S
(i)
Shannon, S(i)

random and Πmax, ΠShannon,
Πrandom in (a) (c) and (b) (d) respectively.

4.2 Data Preprocessing
We use the PLUTO shape file to map the yellow taxi pick-up
GPS points to the associated building blocks: if a building
block is within 200 ft radius of the pick-up location, we
consider that building as the one passengers getting in the
taxi and there is one taxi demand at that building block.
If multiple building blocks are within 200 ft radius of the
pick-up location, we consider the nearest building block
as the one that has a taxi demand. There are over 43,000
building blocks in Manhattan, however, for meaningful
analysis we have only considered pickups from the blocks
that have sufficient temporal coverage: such blocks have at
least 5 pickups a day each. Only 9940 blocks satisfied our
criterion. The number of dropped pickup records is about
16% (2257296 removed records).

For the Uber data sets, we map matching the Uber pick-
up location records with the neighborhood shape file. We
found that there are 75 out of the 190 neighborhoods in NYC
with least 5 Uber picks a day. After the map matching pro-
cess, we obtain the taxi demand time series for each building
block or the Uber demand time series for each neighborhood
(demand time series D(i)

n = d
(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n ).

Scalability. All of our data preprocessing were con-
ducted using the operational data facility at our research
center. In particular, the mapping of taxi pickups to geospa-
tial features, which requires a lot of processing given the
volume of the pickup trips, was done on a 1200+ core cluster
running Cloudera Data Hub 5.4 with Apache Spark 1.6. The
cluster consists of 20 high-end nodes, each with 24TB of
disk, 256GB of RAM, and 64 AMD cores. It takes about
ten minutes for our R-tree based [30] algorithm to map
matching the 14 million samples. Other state-of-the-arts data
indexing structures such as Elite [31] could also be used for
efficient, parallel update and query processing by leveraging
peer-to-peer and parallel computing techniques.

5 RESULTS

In this section, we analyse the predictability of taxi demand
over each building block in NYC. We show that the maxi-
mum predictability of the taxi demand can reach up to 83%
accuracy in average, indicating a high temporal regularity
of human mobility (daily/weekly patterns).

5.1 Limits of Predictability
We show the distribution of the entropy and the maximum
predictability obtained from the yellow taxi data set in Fig. 3.

Fig. 4. Predictability in Manhattan, going from yellow (low) to red (high).

We first determine the entropy S and maximum predictabil-
ity Π of the taxi demand of each building block using the
yellow taxi data set. Then we obtain the distribution of the
entropy S and maximum predictability Π over all building
blocks. Fig 3 (a) depicts the entropy distribution of real
Entropy S(i)

random, Shannon Entropy S(i)
Shannon and random

Entropy S(i)
real; whereas Fig 3 (b) presents the distribution of

Πmax, ΠShannon, Πrandom respectively.
We find that the distribution of S

(i)
random peak at

S
(i)
random = 3.6 (see Fig. 3 (a)). It implies that a building block

would have N (i) = 23.6 ≈ 12 distinct taxi demand levels.
That is, almost every two hours we will observe a new taxi
demand level compared to the previous one. Recall that we
define q = 10 when categorizing the taxi demand, which
implies that there are about 10 taxi demand differences
every two hour in the same building block. In contrast, the
real entropy S

(i)
real peaks at a much smaller entropy value,

S
(i)
real = 0.9. As discussed in Section. 2.2, the real entropy

captures the temporal correlation of the taxi demand time
series. The small real entropy S(i)

real means a high temporal
pattern.

The predictability that any algorithm can correctly pre-
dict the next taxi demand is Π, and the upper bound is
Πmax. From the distribution of the maximum predictability
Πmax shown in Fig. 3 (b), we observe that average value
of Πmax is 0.83. It indicates that the taxi demand can
potentially be correctly predicted with an accuracy 83% over
all building blocks. Both Πrandom and ΠShannon are smaller
than Πmax, which is constant in the previous findings [15],
Πrandom ≤ ΠShannon ≤ Πmax. Since Πmax captures the
temporal correlation of taxi demand, we can reach a higher
potential predictive accuracy if considering the temporal
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Fig. 5. Distribution of Πmax of the Uber and yellow taxis

correlation in our predictive algorithms. Similar results can
also be found if we group the taxi demand daily instead of
hourly (see Fig. 3 (c) and (d)). It means that there is a strong
temporal pattern of human mobility at different temporal
resolution. We apply a Fourier transformation over the taxi
demand to further understand the periodicity in Section 6.2.

5.2 Predictability of Different Functional Buildings

In Fig. 4 (a) we plot the heat map of hourly taxi demand
predictability in Manhattan. From the figure we observe
that different building blocks exhibit different maximum
predictability. In the working places such as Lower Man-
hattan or residential places such as East Village, they have
higher predictability (temporal correlation). People usually
go work in the morning and come home during night, thus
the predictability in these areas are higher compared to
other places. In other places such as Chelsea, NYC’s premier
contemporary-art district, or Little Italy, NYC’s premier
restaurant district, the temporal correlation is not as high
as working or residential places.

To further evaluate the predictability of different func-
tional regions, in Table 3 we show the predictability of taxi
demand of building blocks with different land use. Both
residential and working places have high predictability and
thus exhibit strong temporal patterns. For other places such
as hotels, transportation centers or bureau properties, the
predictability is not as high as residential or working places.
The taxi demand for these regions is mainly dependent on
the events happened during the day (e.g. a boat arrives at
the pier or guests check out of a hotel).

5.3 Uber Versus Yellow Taxi

In this section we examine the difference of the predictabil-
ity between the Uber and yellow taxis. Due to the sparsity
of the Uber taxis, we analyze the maximum predictability of
Uber data sets at neighborhood level (see Fig. 4 (b) for the
heatmap). We also group the hourly taxi demand in each
neighborhood and examine the maximum predictability of
the hourly taxi demand time series. As shown in Fig. 5, the
maximum predictability of the Uber taxi service is higher
than the yellow taxis. This is possibly because the yellow
taxis usually use a random cruising strategy, while the Uber
taxis go to the passenger’s places when a request is received.
The temporal correlation of the taxi demand in a region can
be better captured by the Uber taxi.

6 EVALUATION: APPROACHING THE LIMIT OF
PREDICTABILITY

In this section, we evaluate five predictors, the Markov [17],
the LZW [18], the ARIMA [19], the NN [10] the LSTM [14]
and examine which prediction algorithm can approach the
prediction upper bound Πmax.

6.1 Experiment Setup

We conduct our experiments with five predictors on a work-
station with dual Intel Xeon E5-2695 2.4GHz processors (12
cores in total), and 32 GB of memory. Our algorithms were
implemented in Python with the use of NumPy, scikit-learn,
and TensorFlow libraries. Inspired by previous work [7],
we compare our predictors training them on the first three
weeks of pickup data, and predicting the last week. We
aggregate taxi pickups hourly for each building block, then
rank the building blocks by the maximum predictability
Πmax, and group them into ten 1,000 building block groups.
Due to LSTM and NN predictors being computationally
expensive, we sample time series from the set of median
building blocks of each group to evaluate the predictors
(10 in each group). To justify our sample size, we ran two
sample KS test [32] first comparing original distributions of
the sample time series against the rest, and then comparing
the distributions after differencing time series with lags 1,
2, 3, 4, 8, 12, and 24 that were used to select parameters
of our predictors (see Section 6.2). Our null hypothesis
was that pickups in our sample time series share the same
distribution with the rest of the series. Setting our α = 0.05
we can reject only a small amount of samples as coming
from a different distribution (see Supplementary Table SIII).

Cross-Validation In order to reduce the bias in our ex-
periments and evaluate the true performance of our predic-
tors, we used cross-validated training and testing schema.
The training and testing process starts with training a model
on the first 80% of the values of a time series and predicting
the value that follows the training set to pick up the best
parameters for the NN and LSTM predictors. In total we
have used 14,400 time series.

Error metrics. We use symmetric Mean Absolute Per-
centage Error (sMAPE [33]) to evaluate the performance of
our predictors. Denoting the forecasted taxi demand time
series with F (i) = f

(i)
1 f

(i)
2 . . . f

(i)
n and the actual demand

time series with D
(i)
n = d

(i)
1 d

(i)
2 . . . d

(i)
n and noticing that

both d
(i)
j and f

(i)
j are non-negative numbers we define the

sMAPE metrics as follows:

sMAPE(i) =
1

n

n∑
t=1

∣∣∣d(i)
t − f

(i)
t

∣∣∣
d

(i)
t + f

(i)
t + c

(11)

Due to sMAPE metrics criticized [34] for being unde-
fined for 0 values and having a skewed distribution for
values that are close to 0, we add a constant to the denom-
inator. Overall, sMAPE metrics allows us to compare the
forecast errors with our previous work [35], and with the
theoretical limit of predictability computing 1 − Πmax. The
prediction accuracy equals to (1− prediction error), where
we use sMAPE to evaluate the prediction error in our paper.
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Building Classes: First Level Building Classes: Second Level Maximum Predictability Πmax

Y. GOVERNMENT INSTALLATIONS Y8. Department of Public Works 0.92

O. OFFICE BUILDINGS
O1. Fireproof Up to Nine Stories 0.89

O6. Bank Building 0.89

C. WALK UP APARTMENTS
C0. Three Families & Over 0.84

C1. Over Six Families 0.78
C2. Five to Six Families 0.85

R. CONDOMINIUMS RC. Mixed Commercial/Condos 0.71
H. HOTELS H1. Luxury Type, Built Prior to 1960 & Over 0.69

T. TRANSPORTATION FACILITIES T2. Piers, Docks, Bulkheads 0.69
U. UTILITY BUREAU PROPERTIES U6. Railroads, Private Ownership 0.67

TABLE 3
Predictability of different land uses

6.2 Periodicity of Taxi and Uber Demand

In order to reduce the number of plausible parameters in
our search for optimal parameters for Markov and ARIMA
predictors, we apply a standard Fourier transformation [36]
to the taxi and the Uber demand time series, which also
helps us understand the periodicity of the taxi and Uber
demand:

M
(i)
k =

N−1∑
n=0

D(i)
n e−i2πkn/N . (12)

Here D(i)
n is the nth element of the ith time series (data

collected at the ith location), M (i)
k is a kth magnitude of the

transformation (corresponding to kth frequency), we employ
it as a proxy measure for periodicity of a time series, N is
the length of the time series and n iterates over the periods
of all possible lengths for the given series.

Appendix Fig. S5 demonstrates the results of the trans-
formation. Both of the data sets display similar periods:
the highest magnitudes of the transformation correspond to
the periods of 24, 12, 8 and 4 hours, which indicates that
events separated by those time periods have the highest
congruence. Using this information we select parameters for
the Markov and the ARIMA algorithms that would take into
account sub-sequences that cover the time period of 24, 12,
8 and 4 hours respectively.

6.3 Evaluation

Prediction Error. We show the sMAPE errors of the five
predictors and the prediction error bound 1 − Πmax in Fig.
6 (a) for the Yellow Taxi and Uber demand data respectively
(see also Table 4 and 5 for the detailed results). In Table 4
and 5 we mark the prediction results with the lowest errors
with the dark black color. We have ten building block groups
with Πmax increasing from low to high (E.g., 0%-10% means
the bottom 10% building block group according to Πmax).

We observe that, among all these predictors, when the
maximum predictability Πmax is low, both the NN and
the LSTM predictors provide better prediction accuracy
(low sMAPE errors) for predicting the taxi demand (see
Table 4). In the group with lowest maximum predictability
Πmax = 0.70, the LSTM predictor has a prediction error
26.80%-the lowest of all predictors. The NN predictor has
the second lowest prediction error 28.50%. We find similar

results when predicting Uber demand (see Table 5). When
there is a low predictability, both NN and LSTM predictors
outperform other predictors.

LSTM has been known for capturing the long-term de-
pendency in the sequence modeling [20]. The NN predictor
is able to capture the multiple features such as the weather
information [10], which can not be captured by other pre-
dictors. That’s why when there is a low predictability, by
incorporating additional information such as weather in-
formation or mining hidden long-term temporal dependent
patterns, we can achieve higher prediction accuracy using
LSTM or NN predictor.

The Markov predictor provides better accuracy for build-
ing blocks with high predictability. In the building blocks
with highest maximum predictability Πmax = 0.92, the
Markov predictor is able to predict the taxi demand with
an 13.60% prediction error (which equals to 86.40% pre-
diction accuracy) for yellow taxi data, 1.8% better than the
NN predictor and 14.1% better than the LSTM predictor.
Besides, the computation time (see Fig. 6 (b)) of the Markov
predictor is 2 seconds, only 0.02% of the NN predictor
(about 2.7 hours). The Markov predictor is able to provide
better predication accuracy with much less computation
time for the areas with high predictability. We also observe
that the Markov predictor converges to the predictability
upper bound Πmax quickly. This is consistent with previous
research [17] stating that there is a high positive correlation
between the maximum predictability and the Markov pre-
dictor prediction accuracy.

Unlike the Markov predictor, the LZW predictor does
not show a clear pattern when the maximum predictability
is increasing. The reason is mainly because that the LZW
predictor is based on the Lempel-Ziv-Welch text encoding
algorithm and a LZW tree is maintained for the LZW
predictor (see Appendix Alg. 2). The tree grows dynamically
parsing the taxi demand history D

(i)
n . Thus the perfor-

mance of the LZW predictor heavily depends how this
subsequences LZW tree is built. That is the reason why
the LZW tree performs so differently for the taxi and the
Uber data sets. As it maintains a dynamic subsequences
tree for the taxi demand prediction, if the tree is similar to
the Markov predictor’s lookup table, then its performance
will be similar to the latter one. However, if the dynamic
subsequences tree is unfortunately not optimally built, then
its prediction accuracy will be much worse compared to the
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(a)

(b)

Fig. 6. (a) Prediction errors, (b) Computation time of the Markov, LZW, NN, ARIMA and LSTM predictors.

Predictability Πmax (1-Πmax) Markov LZW NN ARIMA LSTM

0-10% 0.70 (30.40%) 43.50% 41.10% 28.50% 38.50% 26.80%

10-20% 0.74 (26.00%) 36.20% 41.80% 31.90% 35.10% 27.20%

20-30% 0.77 (22.70%) 37.70% 41.90% 36.50% 38.00% 30.70%

30-40% 0.80 (19.70%) 35.20% 39.30% 37.50% 37.90% 32.50%

40-50% 0.83 (17.10%) 27.30% 28.10% 35.00% 46.50% 36.80%

50-60% 0.85 (14.60%) 25.20% 28.60% 26.00% 41.60% 35.90%

60-70% 0.87 (12.50%) 22.40% 22.40% 26.40% 41.20% 36.20%

70-80% 0.89 (10.90%) 16.90% 17.70% 20.10% 35.80% 33.10%

80-90% 0.91 (9.46%) 16.50% 17.20% 16.00% 35.10% 31.90%

90-100% 0.92 (8.00%) 13.60% 14.10% 15.40% 33.00% 27.70%
TABLE 4

Prediction errors of the Markov, LZW, NN, ARIMA, and LSTM predictors on Yellow Taxi dataset at building block level

Predictability Πmax (1-Πmax) Markov LZW NN ARIMA LSTM

0-10% 0.81 (19.33%) 21.31% 20.71% 16.78% 21.18% 28.00%

10-20% 0.82 (18.07%) 17.52% 20.31% 19.40% 24.31% 16.52%

20-30% 0.85 (15.29%) 16.20% 29.41% 21.54% 37.63% 24.90%

30-40% 0.88 (12.04%) 17.31% 32.20% 29.42% 44.74% 34.99%

40-50% 0.92 (9.55%) 18.91% 26.32% 30.87% 52.15% 37.59%

50-60% 0.95 (5.00%) 13.89% 19.41% 16.20% 32.79% 35.05%

60-70% 0.98 (1.78%) 7.08% 6.89% 4.30% 6.65% 21.32%

70-80% 0.99 (1.02%) 1.10% 1.10% 1.65% 1.61% 7.96%

80-90% 0.993 (0.69%) 0.88% 0.88% 0.00% 2.45% 2.61%

90-100% 0.995 (0.49%) 0.00% 0.00% 0.00% 0.81% 0.13%
TABLE 5

Prediction errors of the Markov, LZW, NN, ARIMA, and LSTM predictors on Uber dataset
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Markov one.
We apply a standard Fourier transformation [36] to the

taxi and the Uber demand time series to find the best K for
the order-K Markov predictor. Unlike the LZW predictor,
the K in the Markov predictor is always optimized to
capture the temporal pattern of the time series. Thus it is
converging to the high prediction accuracy rapidly when
the maximum predictability is increasing [17].

From the experiment we find that the maximum pre-
dictability Πmax can help us determining which predictor to
use. In the areas with low predictability (Πmax < 0.83) we
can use the NN and LSTM predictors to reach high accuracy
by capturing the multiple features or hidden patterns. While
in the areas with high predictability (Πmax > 0.83) the
Markov predictor is able to provide better prediction ac-
curacy while keeping the computation time low, as it is able
converge to the predictability upper bound Πmax quickly
and effecitently [17].

7 RELATED WORKS

7.1 Predicting Taxi Demand

The taxi demand prediction problem has attracted more
attention recently with the growth of the ride-sharing com-
panies. Mukai et. al forecast the taxi demand from taxi
historical data with a neural network (MLP) [10]. Li Et. al
adapt the feature selection tool, L1-Norm SVM, to select the
most salient feature patterns that determined the taxi perfor-
mance [2]. An improved ARIMA based prediction method
to forecast the spatio-temporal variation of passengers in
hotspots is proposed by Li et. al [8]. Moreira-Matias et. al
argued that ARIMA based prediction is not the best solution
[7]. They proposed a new ensemble framework showing
that their method can reach a high prediction accuracy. Li
et al. [37] proposed a multi-task representation learning for
taxi travel time estimation using the paths of historical trips
during the training phase improving the performance.

The latest works use the deep neural networks com-
bined with multiple features to predict the taxi demand in
cities. Wang et. al [38] propose TaxiRec, a framework for
evaluating and discovering the potential passengers of road
clusters. TaxiRec includes three influential factors points-of-
interest, road length and road type in their neural network
predictive algorithm. Wang et. al [39] use a deep neural net-
work structure to discover complicated taxi supply-demand
patterns. They utilize multiple data sources including car-
hailing orders, weather and traffic data. Different to these
two papers, in this paper predict the taxi demand of each
building block and we consider the taxi demand of one
location as a time-series data. For one single building block,
the road type, road length and point-of-interest types are
fixed parameters and thus can not be considered as features
for prediction here. By showing the predictability of differ-
ent land use (Table 3), we show that the predictability is
correlated with the point of interests, and thus corresponds
to the prediction accuracy of different predictors.

7.2 Inferring Unmet Demand

From the taxi data set we can measure and predict the met
taxi demand, that is, the number of the taxi services that

emerged and will emerge at different locations. However,
the unmet taxi demand, e.g., the number of people who
need a taxi but could not find one, cannot be simply ex-
tracted from the taxi data set. To solve this problem, recent
papers have tried to infer the unmet taxi demand from the
taxi data set. In [12] the authors combined flight arrival with
taxi demand and predict the passenger demand at different
airport terminals in Singapore use queueing theory. Anwar
et. al [11] formalized the unmet taxi demand problem and
presented a novel heuristic algorithm to estimate it without
any additional information. They inferred the unmet taxi
demand from taxis with empty services and showed that it
can be used to quantify the unmet demand. It must be noted
that, although in our paper we only focus on predicting the
met taxi demand , our method is a general solution and can
be used for predicting unmet taxi demand.

7.3 Temporal Pattern of Human Mobility

It has been found that urban human mobility exhibits strong
regularities, e.g., people usually go to work during day-
time on weekdays, and go home after work. Marta et al.
[40] found that the trajectories in human mobility exhibit
strong regularities by studying cell phone user’s locations.
They show that human trajectories follow a high degree
of temporal and spatial temporal pattern. Each person has
a significant probability of returning to a few highly fre-
quented locations such as home or working places. Wang
et al. [41] model the time varying regularities of road traffic
flows in road segments and intersections by mining statistic
trajectories of all vehicles in the network, and design a
routing algorithm for vehicle-to-vehicle data transmission
in vehicular networks. Song et al. proposed the entropy-
based probability to measure the temporal pattern of the
individual human mobility [15]. They found a potential
prediction algorithm that can reach up to 93% accuracy.
They also observed that the user can be found in his or
her most visited location during a corresponding hour long
period with a high probability, which is indicative of a high
temporal pattern of human mobility. The temporal pattern
of human mobility also leads to the temporal pattern of
taxi pick-ups. The human mobility patterns for different
functional regions are different. Previous papers have an-
alyzed the temporal pattern of urban human mobility and
inferred the functions of the regions in three cities [42],
[43]. Similar results can be found in Table 3, where there
is a high predictability in the residential places and a low
predictability in the transportation hubs.

8 DISCUSSION

8.1 Effect of Spatial Resolution

We obtain the hourly number of taxi pick-ups per neighbor-
hood, its maximum predictability, and the prediction errors
of the five predictors and we examine the effect of the spatial
resolution of the five predictors in Supplementary Figure S7,
S8 and Supplementary Table SI. We have similar findings
as the one we show in the evaluation section: when the
predictability is high the NN predictors are able to achieve
low prediction errors by capturing the hidden patterns,
When the predictability is high we can use the simple
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Markov predictor to achieve better prediction accuracy with
much lower cost. The NN predictor is the best predictor
when the maximum predictability of the hourly taxi pick-
ups at the neighborhood level is low (among the bottom
30%). When the maximum predictability is high the Markov
predictor easily outperforms the other four predictors (see
Supplementary Table SI). The spatial resolution is not an
important factor affecting the prediction performance of
different predictors, the maximum predictability is.

8.2 Generality of Results

To test the generality of our findings, we run the experi-
ments on the third spatial-temporal data set: the New York
CitiBike data set (a bicycle-sharing usage data set) 4. The
data includes start station id, end station id, start time and
end time for each bike trip. Overall, there are 328 stations
which served as originating points for at least one bike ride
with a grand total of 936,880 trips. We obtain the maximum
predictability of the hourly bike usages per station and
examine the performance of the five predictors. We show the
results in Supplementary Table SII, Supplementary Figure
S9 and S10.

For the stations where the bike usage has lower pre-
dictability, both LSTM and NN predictors are able to achieve
lower prediction errors, as they are able to discover more
complex non-linear patterns. On the other hand, for stations
with higher predictability the Markov predictor is able to
achieve low prediction errors with much less computation
time. Therefore, having tested the maximum predictability
and the predictors on three data sets that representing taxi
demand, Uber demand and shared bike usage, we show
that our finding is general: the maximum predictability can
help determine which predictor to use in order to achieve
low prediction errors and computational costs. It must be
noted that the frequency of running a prediction model is
dependent on the applications. For example, the prediction
of health care application is usually in seconds [44], while
other applications such as economic growth is usually in
years [45]. In our paper we do the prediction of taxi demand
at hourly and daily interval.

9 CONCLUSION

In this paper, we analyze over 14 million yellow and Uber
taxi pick-up samples in NYC. We find that there is a high
predictability of taxi demand (up to 83% in average), which
indicates strong temporal correlation of human mobility. We
also examine which commonly used predictive algorithm
could approach the maximum predictability. We show that
the compute-intensive deep learning predictor does not
always have better prediction accuracy than the Markov
one. In the areas with low predictability (Πmax < 0.83),
the LSTM predictor can reach high accuracy by captur-
ing the hidden long-term dependent temporal patterns.
On the other hand, in the areas with high predictability
(Πmax > 0.83), the Markov predictor is able to reach
high prediction accuracy while keeping the computation
time low. The temporal correlation of the taxi demand can

4. https://www.citibikenyc.com/system-data

be better captured in the Uber taxi data, possibly due to
different cruising strategies.

It must be noted that our findings in this paper are not
limited to the taxi or Uber demand problem. The same
approach can be used for predictions in other time-series
data sets [46], [47], such as the bike usage of a bike station
[48] as shown above. We demonstrate that the knowledge
of the predictability can help determine which predictor
to use in the trade-off between the accuracy of a forecast
and computational costs. Our finding is general and can be
applied to other time-series data sets.
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APPENDIX A
ALGORITHMS

Algorithm 1: Algorithm for Calculating Πmax

input : The values of N(i) and S, accuracy
output: The maximum predictability Πmax

1 // Support function to calculate i-th approximation.
2 getApproximation(Πmax, N(i), S):
3 // Value of the function (6).
4 f = f(Πmax, N(i), S);
5 // Value of the first derivative.
6 d1 = log2

(
1− Πmax

)
− log2

(
Πmax

)
− log2

(
N(i) − 1

)
;

7 // Value of the second derivative.
8 d2 = 1(

Πmax−1
)
Πmax

;

9 return f(
d1−f× d2

2d1

) ;

10 // Check if the equation has no solutions (Lemma 2).
11 if S > log2 N

(i);
12 then
13 return ”No solutions”;

14 // Check if the solution approaches 1 (Lemma 5).
15 if S ≤ 0.01;
16 then
17 return 0.999;

18 // Else search between the maximum (Lemma 4) and 1.
19 Πmax = (N(i) + 1)/(2N(i));
20 // Iterate until the accuracy is achieved.
21 while

∣∣f(Πmax, N(i), S
)∣∣ > accuracy do

22 Πmax = Πmax − getApproximation
(
Πmax, N(i), S

)
;

23 return Πmax;

Algorithm 2: LZW Predictor
input : The taxi demand time series D(i)

n
output: The predicted value of taxi demand β at the time n+ 1

1 Set buffer subsequence equal to the first value in D(i)
n , b = d

(i)
1 ;

2 Initialize an empty LZW Tree;
3 Initialize j = 2;
4 while j ≤ n;
5 do
6 if b followed by d(i)

j is in the LZW tree;
7 then
8 Append d(i)

j to the buffer b;

9 else
10 Update the LZW tree with b followed by d(i)

j ;

11 Update count
(
d

(i)
t≤j

)
at each node;

12 Set b = d
(i)
j ;

13 Set j = j + 1;

14 Find the subsequence s(i)m followed by β with the highest probability in
the the LZW tree;

15 return β;

Algorithm 3: NN Predictor
input : The taxi demand time series D(i)

n combined with exogenous
variables, corresponding time stamps T = {t1, . . . tn}

output: The predicted value of future taxi demand β
′

at the time n+ 1
1 Create additional binary features from the time stamps: each of the time

periods and dates is assigned an individual binary feature that turns on
during the period and date.;

2 Train a separate Neural Network for each building block and predict the
future value of taxi demand β;

3 Calculate smoothed prediction β
′

with linear combination of β and m
latest values of taxi demand with Gaussian kernel. return β

′
;

A.1 ARIMA model

Formaly ARIMA model is defined as

Algorithm 4: ARIMA Predictor
input : The taxi demand time series D(i)

n from time stamps
T = {1, . . . , n} per building block

output: The predicted taxi demand β at time stamps n+ 1
1 Calculating AIC scores for each tuple (pi, di, qi) from the parameter set

(P, D, Q);
2 Selecting a tuple (pk, dk, qk) that has the smallest AIC score;
3 Fitting the ARIMA(pk, dk, qk) model for D(i)

n ;
4 return D̂(i)

n+1 as β;

Algorithm 5: Order O(k) Markov chain Predictor
input : The taxi demand time series D(i)

n , order of the predictor k, and
the Markov chain Predictor matrix T

output: The predicted taxi demand β at time n+ 1
1 Extracting the recent subsequence of length k,

c = d
(i)
n−k+1d

(i)
n−k+2 . . . d

(i)
n from D(i)

n ending at time n;
2 Looking for the subsequence c in the matrix T at row T (c);
3 if T (c) is empty // The taxi demand time series c did not

occur previously.
4 then
5 return the taxi demand with the highest probability in D(i)

n ;

6 else
7 Finding the subsequence c followed by β with the highest

probability at the row T (c);
8 // Similar taxi demand history has appeared at

least once before
9 return β;

10 Update the matrix T with the new taxi demand d(i)
n+1 at the time n+ 1.

(
1−

p∑
i=1

φiL
i

)
(1− L)dd

(i)
t = δ +

(
1 +

q∑
i=1

θiL
i

)
εt (13)

where Lk is a lag operator L of order k, Lkd(i)
t = d

(i)
t−k,

d ∈ N represents the multiplicity of a unit root (1 − L)
usually denoted as integration, δ introduces the drift of the
model that is equal to δ/

∑
i φi, p and q specify the number

of the parameters φ of the auto-regressive, and θ of the
moving average components of the model correspondingly,
εt is the normally distributed error.

Order of the model can be denoted as ARIMA(p, d, q),
where p is the number of auto-regressive terms, d is the
number of nonseasonal differences (integration) that intro-
duce nonstationarity when d 6= 0, and q is the number of
error terms (moving-average).

A standard way to identify the proper order of the model
is to the Akaike Information Criterion (AIC) [1]:

AIC(p, d, q) = −2 log(L) + 2(p+ q + k + 1) (14)

where L is the maximum likelihood estimator of the
innovation variance, k ∈ {0, 1} stands for the presence or
absence of the constant term in the model, and the sum
p + q + k + 1 represents the total number of parameters in
the model.

The optimal model ARIMA(p, d, q) is selected as the
one that has the lowest AIC coefficient compared with the
other orders considered. To improve the prediction accuracy
and decrease the number of overall iterations, one might
consider relating the choice of the parameters p and q
with the inverse frequencies of largest magnitudes in the
frequency spectrum of the original time series X . Alterna-
tive approaches to select the parameters (p, d, q) minimize∑N
i=1 ε

2
i .
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A.2 LSTM

The inputs for the model enter LSTM cells that contain 3
gates within their structure: input, output, and forget. In the
input gate the original input D(i)

n is first passed through the
layers with σ and tanh activation functions:

i1 = tanh
(
bi1 +D(i)

n W i1
1 + hn−1W

i1
2

)
(15)

i2 = σ
(
bi2 +D(i)

n W i2
1 + hn−1W

i2
2

)
(16)

where bi1 and bi2 are the input biases, W i1
1 and W i2

1

stand for the input weights, W i1
2 and W i2

2 are the weights
of the previous cell’s output hn−1. The output of the input
gate is the result of pointwise multiplication of the outputs
of the tanh and σ layers, namely i1 ⊗ i2.

The forget gate is evaluated by another neural network
layer with sigmoid activation

f = σ
(
bf +D(i)

n W f
1 + hn−1W

f
2

)
(17)

Therefore, the combined output of the input and forget
gates is f + i1 ⊗ i2.

The output gate is yet another layer with σ activation

o = σ
(
bo +D(i)

n W o
1 + hn−1W

o
2

)
(18)

Finally, the output of the entire LSTM cell is calculated
by hn = tanh (f + i1 ⊗ i2)⊗ o.

APPENDIX B
FIGURES AND TABLES

Supplementary Figure S1. LZW tree

Supplementary Figure S2. MLP neural network preditor

Supplementary Figure S3. sMAPE errors given the number of neurons
per layer

Supplementary Figure S4. LSTM preditor
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Predictability Πmax (1-Πmax) Markov LZW NN ARIMA LSTM

0-10% 0.92 (7.95%) 23.02% 14.73% 13.56% 17.81% 19.24%

10-20% 0.93 (6.85%) 11.26% 12.75% 13.15% 10.77% 11.23%

20-30% 0.94 (6.01%) 18.53% 21.10% 14.76% 18.19% 21.19%

30-40% 0.948 (5.16%) 13.07% 20.27% 19.97% 21.49% 23.84%

40-50% 0.96 (3.92%) 15.64% 37.20% 28.12% 46.74% 23.65%

50-60% 0.973 (2.66%) 15.99% 19.30% 18.58% 28.50% 18.27%

60-70% 0.987 (1.29%) 6.94% 6.28% 6.78% 6.90% 9.82%

70-80% 0.995 (0.46%) 0.33% 0.33% 0.33% 0.00% 4.17%

80-90% 0.996 (0.39%) 0.00% 0.00% 0.00% 0.00% 1.19%

90-100% 0.996 (0.38%) 0.00% 0.00% 0.17% 5.58% 4.47%

Supplementary Table SI
Prediction errors of the Markov, LZW, NN, ARIMA, and LSTM predictors on Yellow Taxi dataset at neighborhood level

Predictability Πmax (1-Πmax) Markov LZW NN ARIMA LSTM

0-10% 0.72 (27.54%) 53.87% 47.82% 28.89% 48.51% 31.23%

10-20% 0.74 (26.20%) 51.74% 46.32% 30.32% 43.77% 34.62%

20-30% 0.75 (24.88%) 51.30% 45.50% 28.60% 45.19% 31.54%

30-40% 0.76 (23.66%) 45.26% 48.50% 30.76% 41.49% 33.37%

40-50% 0.78 (21.94%) 44.39% 43.60% 30.96% 50.74% 36.85%

50-60% 0.79 (20.56%) 39.00% 42.24% 32.57% 45.15% 40.01%

60-70% 0.81 (19.26%) 37.00% 38.15% 34.25% 38.50% 37.83%

70-80% 0.83 (16.96%) 30.79% 35.14% 29.16% 37.39% 35.58%

80-90% 0.85 (14.98%) 23.62% 28.56% 23.24% 35.80% 30.43%

90-100% 0.91 (8.72%) 21.59% 26.12% 21.19% 33.24% 29.64%
Supplementary Table SII

Prediction errors of the Markov, LZW, NN, ARIMA, and LSTM predictors on Citibike dataset

Predictability no lag lag 1 lag 2 lag 3 lag 4 lag 8 lag 12 lag 24

0.694 3e-06 0.669 0.179 0.231 0.036 0.024 0.065 0.017

0.739 0.042 0.952 0.537 0.928 0.597 0.308 0.584 0.657

0.774 8e-13 0.08 0.058 0.07 0.067 0.04 0.023 0.008

0.803 0.225 0.958 0.782 0.959 0.918 0.926 0.933 0.998

0.829 0.995 1.0 0.964 0.933 0.614 0.587 0.347 0.444

0.854 0.102 0.826 0.169 0.166 0.074 0.038 0.117 0.067

0.875 1.0 0.979 0.989 0.897 0.905 0.798 0.497 0.342

0.891 0.589 0.962 0.947 0.869 0.753 0.638 0.757 0.426

0.906 0.97 1.0 0.975 0.999 0.991 0.964 0.875 0.867

0.922 0.527 0.995 0.185 0.349 0.001 0.004 0.002 0.028
Supplementary Table SIII

Results of two sample KS test for the distributions of sample time series vs the rest with α = 0.05. p values < α shown in bold.
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Supplementary Figure S5. Fourier transform with periods of the
strongest magnitude for taxi and Uber data sets

Supplementary Figure S6. Effect of of categorize size q

Supplementary Figure S7. Prediction errors of the Markov, LZW, NN,
ARIMA and LSTM predictors at the neighborhood level.

Supplementary Figure S8. Neighborhood prediction time.

Supplementary Figure S9. Prediction errors of the Markov, LZW, NN,
ARIMA and LSTM predictors using citibike data.

Supplementary Figure S10. Citi Bike prediction time
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APPENDIX C
PROOF OF THE MAXIMUM PREDICTABILITY Πmax

The maximum predictability Πmax can be solved by the
following equation:

S(i) = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+(1−Πmax)log2(N (i) − 1)

Our proof, which is adopted from [2], is provided below.

Proof. Given any predictive algorithm α, let Pα(X
(i)
n =

X̂
(i)
n |h(i)

n−1) be the distribution generated over the next
possible taxi demand X̂

(i)
n at the location i. Here h(i)

n−1 =

{X(i)
n−1, X

(i)
n−2, . . . , X

(i)
1 } be the location i ’s past taxi de-

mand from time 1 to n − 1. Let X(i)
t represents the real

demand at the time t. Pr[X(i)
n = x(i)|h(i)

n−1] is the prob-
ability that the next taxi demand X

(i)
n is x(i), given the

taxi demand history h
(i)
n−1. Thus P (X

(i)
n |h(i)

n−1) is the true
distribution over the next taxi demand.

Let π(h
(i)
n−1) be the probability that there is a most likely

taxi demand at the location i given the taxi demand history
h

(i)
n−1. We have

π(h
(i)
n−1) = supx{Pr[X(i)

n = x|h(i)
n−1]},

The probability of successfully predicting the
next taxi demand is Prα{X(i)

n = X̂
(i)
n |h(i)

n−1} =∑
x(i) P (x(i)|h(i)

n−1)Pα(x(i)|h(i)
n−1). Since π(h

(i)
n−1) ≥

P (x(i)|h(i)
n−1) for any x(i), we have

Prα{X(i)
n = X̂(i)

n |h
(i)
n−1} =

∑
x(i)

P (x(i)|h(i)
n−1)Pα(x(i)|h(i)

n−1)

≤
∑
x(i)

π(h
(i)
n−1)Pα(x(i)|h(i)

n−1)

= π(h
(i)
n−1)

(i)∑
x

Pα(x(i)|h(i)
n−1)

= π(h
(i)
n−1)

Then we define the predictability Π(n) for a taxi demand
series with a history of length n − 1. P (h

(i)
n−1) represents

the probability of a particular taxi demand history h
(i)
n−1.

If we sum over all the possible histories of length n − 1,
we have the predictability as Π(n) =

∑
h

(i)
n−1

P (h
(i)
n−1)π(h

(i)
n−1).

The overall predictability Π can be defined as Π =

lim
n→∞

1

n

n∑
t

Π(t).

Let N (i) be the total number of possible taxi demand
and there is a uniform distribution over the remaining
N (i)−1 possible taxi demand. Then we will have X ′, whose
distribution P ′(X(i)|h(i)) = (p, 1−p

N(i)−1
, 1−p
N(i)−1

. . . , 1−p
N(i)−1

).

Note here S(X
(i)
n |h(i)

n−1) ≤ S(X ′|H(i)
n−1). Then we have

S(X ′) = −plog2(p)−
∑ 1− p

N (i) − 1
log2(

1− p
N (i) − 1

)

= −plog2(p)− (1− p)log2(
1− p

N (i) − 1
)

= −[plog2p+ (1− p)log2(1− p)]
+ (1− p)log2(N (i) − 1)

= SF (p)

= SF (π(h
(i)
n−1)

Note here the Fano function SF (p) is concave and
monotonically decreases with p. Based on Fano’s inequality,
S(X

(i)
n |h(i)

n−1) ≤ SF (π(h
(i)
n−1)). Following Jensen’s inequal-

ity, we have

S(n) =
∑
h

(i)
n−1

P (h
(i)
n−1)S(X(i)

n |h
(i)
n−1)

≤
∑
h

(i)
n−1

P (h
(i)
n−1)SF (π(h

(i)
n−1))

≤ SF

∑
h

(i)
n−1

P (h
(i)
n−1)π(h

(i)
n−1)


= SF (Π(n))

For a stationary stochastic process χ = X
(i)
t , based on

S(n) ≤ SF (Π(n)) and Jensen’s inequality, we have

S = lim
n→∞

1

n
S(X

(i)
1 , X

(i)
2 , . . . , X(i)

n )

= lim
n→∞

1

n

n∑
t=1

S(X
(i)
t |h

(i)
t−1)

= lim
n→∞

1

n

n∑
t=1

S(t)

≤ lim
n→∞

1

n

n∑
i=1

SF (Π(t))

≤ SF

(
lim
n→∞

1

n

n∑
i=1

(Π(t))

)
= SF (Π)

Here S = limn→∞
1
nS(X

(i)
1 , X

(i)
2 , . . . , X

(i)
n ) is the defini-

tion of entropy. We define S(t) = S(X
(i)
t |h

(i)
t−1) as the condi-

tional entropy at the time t. Let Πmax be the solution to the
equation S = SF (Πmax) ≤ SF (Π). Since SF (p) is concave
and monotonically decreased, we have Π ≤ Πmax, which
means that Πmax is the upper bound of the predictability
Π. The predictability upper bound Πmax can be solved by
solving the following equation:

S = SFΠmax

= −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+ (1−Πmax)log2(N (i) − 1)
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APPENDIX D
PROPERTY OF THE MAXIMUM PREDICTABILITY
Πmax

The maximum predictability Πmax can be obtained by solv-
ing Equation 5. In this equation, both S and N (i) are known
numbers. The equation is transcendental, i.e. it does not
have a closed form solution. But it can be approximated
using numerical methods and analysis. We give five lemmas
on the relations between N (i), S, and Πmax to help calculate
the maximum predictability:

LEMMA 1. f(Πmax) = 0 has one critical point–the maxi-
mum at Πmax = 1

N(i) : it monotonically decreases if Πmax >
1

N(i) and increases if Πmax < 1
N(i) .

PROOF. Given that log2 Πmax = ln Πmax

ln 2 and S ln 2 is
a constant, the derivative of the function is ∂f (Πmax)

∂Πmax =
(− ln Πmax+ln (1−Πmax)−ln (N(i)−1))

ln 2 . To find the critical
points of the function we equal it to zero ∂f (Πmax)

∂Πmax = 0
and we get Πmax = 1

N(i) . Therefore, the function always
has only one critical point at 1

N(i) .
To examine the behavior of Πmax near the point 1

N(i) ,
we examine Πmax = 1

N(i)±ε where ε > 0 is an arbi-
trary infinitely small positive number. We obtain two ex-
pressions for the addition and subtraction of ε that cor-
respond to the left and the right side of the maximum:
− ln

(
1

N(i) + ε
)

+ ln
(
1−

(
1

N(i) + ε
))
− ln

(
N (i) − 1

)
and

− ln
(

1
N(i) − ε

)
+ ln

(
1−

(
1

N(i) − ε
))
− ln

(
N (i) − 1

)
.

After simplification, the first expression converts into
−(N (i))2ε. Because (N (i))2 > 0 and ε > 0, we derive

that −(N (i))2ε < 0, therefore,
∂f

(
Π max = 1

N(i)+ε

)
∂Πmax < 0. The

function monotonically decreases to the right of the critical
point at 1

N(i) .
The second expression can be simplified as (N (i))2ε.

Because (N (i))2 is larger than 0 and ε is larger than 0, we

obtain (N (i))2ε > 0. Therefore,
∂f

(
Π max = 1

N(i)−ε

)
∂Πmax > 0. The

function monotonically increases to the left of the critical
point at 1

N(i) , and the critical point is the maximum value.
LEMMA 2. f(Πmax) = 0 has no solutions if N (i) < 2S .
PROOF. We prove it by contradiction. Supposing the

function has solutions for N (i) < 2S . From Lemma 1 we
know that the function always has a global maximum at
Πmax = 1

N(i) . The value of the function in the global
maximum is f(Πmax = 1

N(i) ) = log2(N (i))−S. IfN (i) < 2S ,
N (i) = 2S − ε, ε > 0 then f(Πmax = 2S − ε) = log2(2S −
ε) − S < 0. Because the maximum value is below 0 that
implies that all the other values are below zero as well and
the equation has no solutions, {Πmax|f(Πmax) = 0} = ∅.

LEMMA 3. f(Πmax) = 0 has exactly one solution if N (i) =
2S and the solution is 1

N(i) .
PROOF. Following the results of Lemma 2, the value

of the function at the maximum is f(Πmax = 1
N(i) ) =

log2(N (i))−S. Setting it equal to 0 we obtain N (i) = 2S , i.e.
the maximum lies on the axis.

LEMMA 4. f(Πmax) = 0 has at most two solutions ifN (i) >
2S and the biggest solution is in

(
1

N(i) , 1
)
.

PROOF. Following the results of Lemma 3, we
know that the function has only one global maximum

max(f(Πmax)) = f(Πmax = 1
N(i) ) = log2(N (i)) − S.

Having N (i) > 2S we analyze the function at N (i) = 2S +ε,
ε > 0. Since f(Πmax = 2S + ε) = log2(2S + ε) − S > 0,
the only maximum of the function is strictly above zero.
Because the function is continuous, it has two solutions at
most for Πmax > 0. The solutions are located to the left and
to the right of the maximum, therefore, the bigger solution
is bounded by ( 1

N(i) , 1).
LEMMA 5. If S → 0, the solution to f(Πmax) = 0

approaches 1.
PROOF. At first, we examine what happens when S = 0.

The equation turns into −Πmaxln(Πmax) − (1 − Πmax) ×
ln(1 − Πmax) + (1 − Πmax)ln(N (i) − 1) = 0. Grouping
the similar terms together around (1 − Πmax) we ob-
tain (1 − Πmax)ln

(
Πmax(N(i)−1)

1−Πmax

)
− ln(Πmax) = 0. Ex-

panding the brackets for (1 − Πmax), grouping the log-
arithms together and performing exponentiation we get(

N(i)−1

Πmax
Πmax

1−Πmax (1−Πmax)

)1−Πmax

= 1. Having 1 on the right

side means that 1−Πmax = 0 and therefore, Πmax = 1.
Second, we repeat the procedure with S > 0. We ob-

tain
(

Πmax
2

1−Πmax (N(i)−1)
1−Πmax

)1−Πmax

= 2S·ln(2). Having the

limS→0(2S·ln(2)) = 20 = 1 implies that the entire function
becomes 1 as S approaches 0.

To help the readers better understand the property of the
maximum predictability (Lemma 1-5), in Fig. 2 we demon-
strate different behavior of the equation given different
pairs of parameters N (i) and S. Note here circles indicate
maximums, and rectangles indicate solutions. For N (i) = 6
and S = 1.2 we observe the solution at Πmax = 0.8, for
N (i) = 2 and S = 0.1 we obtain Πmax = 0.99, for N (i) = 4
and S = 2 function turns into a zero at Πmax = 0.25,
and finally, for N (i) = 6 and S = 3 there are no solutions
({Πmax|f(Πmax) = 0} = ∅).

APPENDIX E
EFFECT OF CATEGORIZING FACTOR

Since there can be high variability in taxi or Uber demand,
it is hard to predict the exact value for d(i)

t . For simplicity,
we use a factor q to round the value for the taxi demand.
We group every q taxi demand as one taxi demand. We try
to predict the taxi demand at every q level, e.g., if q = 10,
then 620-629 all become 620 in the sequence. After a few
tests, we set q = 10 for making the prediction more relaxed
while keeping the errors low: in Supplementary Fig. S6 we
study the effect of the category size q. The red dashed line,
the green dashed line and the black dashed line refer to
the probability density function of Πmax when q equals to
100, 10 and 1 respectively. When q equals to 1, it means
that there is no categorization in terms of prediction. As
shown in the figure, we can find that with an increasing q,
the upper bound of predictability Πmax goes up. It means
that an potential prediction algorithm has higher prediction
accuracy at every 100 level compared to at every 10 or 1
level. We set q = 10 and make the prediction more relaxed
while keeping the prediction errors low.
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Supplementary Figure S11. Heterogeneous taxi demand at different
regions ranging between a few and a few million pickups.

APPENDIX F
MAP PARTITION METHODS

In this paper we propose a method of predicting the taxi
demand at high spatial resolution, i.e., predicting the taxi
demand at building block level. In many previous works
[3], [4], [5], [6], [7], the authors usually partition a city into
grids or neighborhoods, e.g. partitioning NYC into equal-
size grids [3].

There are two problems with the grid or neighborhood
based partition method. First, grid or neighborhood based
partition method can lead to inaccurate results. It has been
found that the population of a city is exponentially dis-
tributed, decreasing from the city center to rural areas [8].
Grid or neighborhood based partition method will lead to
under-fit for the prediction of the taxi demand service in the
city center, while over-fit occurs for the prediction of the taxi
demand service in rural areas.

In Fig S11. we partition NYC into 40 neighborhoods and
plot the histogram of the taxi pick-ups of these neighbor-
hoods. We observe that there are big differences in terms of
the taxi pick-ups in different neighborhoods. Some neigh-
borhoods contain a lot of pick-ups, while other neighbor-
hoods contain few. The detailed information of taxi demand
in the highly dense neighborhoods will be hidden.

The second problem is that a grid or neighborhood may
hide the rich information of the city in dense urban areas.
Even a relatively high resolution grid may contain mismatch
structures, e.g. overlapping highways, across governmental
units and boundaries with very different characteristics.
Physical patterns of city development such as zoning and
land-use applications is a richer data source, and is often
said to be a good context feature for machine-learning
predictors [7], [6], [9]. One building block with a single
function might be mapped to multiple grids, which will lead
to inaccurate results for machine-learning predictors.

To overcome the limitation of the grid-based or
neighborhood-based partition methods, in this paper we
propose to predict the taxi demand at the high spatial
resolution, i.e., prediction at building block level. The pre-
diction of taxi demand at the building block level did
not only address the issues of the under-fit of predicting
taxi demand service at the city center, but also provides
additional information such as the land-use characteristics
of the building block, which can be used for multiple feature
machine learning algorithms [9], [4].
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