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ABSTRACT
From tweets to urban data sets, there has been an explo-
sion in the volume of textual data that is associated with
both temporal and spatial components. Efficiently evalu-
ating queries over these data is challenging. Previous ap-
proaches have focused on the spatial aspect. Some used
separate indices for space and text, thus incurring the over-
head of storing separate indices and joining their results.
Others proposed a combined index that either inserts terms
into a spatial structure or adds a spatial structure to an
inverted index. These benefit queries with highly-selective
constraints that match the primary index structure but have
limited effectiveness and pruning power otherwise. We pro-
pose a new indexing strategy that uniformly handles text,
space and time in a single structure, and is thus able to effi-
ciently evaluate queries that combine keywords with spatial
and temporal constraints. We present a detailed experimen-
tal evaluation using real data sets which shows that not only
our index attains substantially lower query processing times,
but it can also be constructed in a fraction of the time re-
quired by state-of-the-art approaches.

1. INTRODUCTION
The ubiquity of sensors, GPS-enabled smartphones and

social networks has led to an explosion in the volume of doc-
uments that have both spatial and temporal components.
Twitter has over 288 million active users that generate 500
million tweets each day; 80% of these are on mobile devices
producing tweets with geographical information [31]. An
increasing number of urban data sets are being made avail-
able by cities worldwide, and most of these contain spatio-
temporal and textual attributes [5]. These open data present
new opportunities and can help us better understand differ-
ent aspects of human life.

Analysis of these data demand complex queries that in-
clude constraints specifying regions, keywords, and time in-
tervals of interest. For example, to track how the flu spreads
in a city, one can search for tweets that mention flu-related
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terms in different neighborhoods, over different periods of
time [14]. Efficiently evaluating such queries is challenging,
in particular, over large volumes of data and when interac-
tive response times are required.

Different representations have been used to store and in-
dex spatial, temporal and textual information. Text docu-
ments are usually modeled as bag-of-words and stored in flat
structures like inverted indices [25]. Time can be represented
in a one-dimensional space. Space, on the other hand, con-
sists of two (or more) dimensions and is often indexed using
space-partitioning structures such as R-trees [18], grids [27],
quadtrees [17], or space-filling curves [34]. A natural ap-
proach is thus to use multiple indices to deal with tex-
tual, spatial and temporal components, one per attribute
type [32]. The results of a query are then produced by tak-
ing the intersection of the result sets returned by each index.
Besides its simplicity, this approach is also general and sup-
ports a wide range of queries. However, this comes at a high
cost: many irrelevant documents are likely to be retrieved
for queries that contain multiple constraint types. Consider
a query such as Q5 in Table 1, which retrieves all tweets
containing a term and that was posted at given location
and time period. If multiple indices are used, three distinct
sub-queries have to be computed separately: all tweets that
contain the keyword “ebola” (inverted index), all tweets in
New York City (spatial index), and all tweets posted be-
tween Sept 1 and Dec 31, 2014 (temporal index). Assuming
that a small percentage of tweets in this spatio-temporal
slice contain the keyword ebola, a large number of tweets
would be retrieved that are not part of the query answer.

To alleviate this problem, techniques have been proposed
to combine spatial and textual information in a single in-
dex. This class of indices can be broadly classified into two
groups: spatial first, where a spatial data structure is used
to organize the documents over regions and an inverted in-
dex is associated with each region [11,16,23,33]; and textual
first, where documents are first organized by keywords and a
spatial structure is used to index the documents associated
with each keyword [13,29,34,35]. These strategies were de-
signed to evaluate top-k queries and they are beneficial for
queries whose most selective constraints match the primary
index structure, i.e., relatively few answers are returned by
the primary index, but they can be inefficient otherwise.
Consider the queries in Table 1. A spatial-first index speeds
up spatial-only queries such as Q1 and Q2, where the spa-
tial constraint is the most selective. For Q2, there are many
fewer mentions of “ebola” and “outbreak” in New York City
than in the rest of the world, therefore filtering over space
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Table 1: Comparison of different indexing strategies

Query Description Constraints Multi-
Index

Spatial
first

Textual
first

ST2I

Q1 Retrieve all keywords mentioned on Twitter within 50 miles of Time Squares space X X X
Q2 Retrieve the 50 most relevant tweets that contain “ebola” and “outbreak” in

New York City
space, text X X

Q3 Retrieve all tweets that contain “ebola” text X X X
Q4 Retrieve all keywords mentioned on tweets posted in Dec 2014 within 50 miles

of Times Square
space, time X

Q5 Retrieve tweets that contain the term “ebola” posted between Sep 1 and Dec
31, 2014 in New York City

space,time,text X

first is advantageous. In contrast, a textual-first approach
would be inefficient for this query, since a join would be re-
quired between two potentially large result sets: tweets that
mention the keywords “ebola” and “outbreak” for the entire
world. In contrast, a spatial-first index can be inefficient
for queries whose spatial constraints are less selective, i.e.,
queries that cover regions containing a relatively large num-
ber of results. One example is Q3, which looks for tweets
all over the world; for this query, a textual-first index would
perform better. Note that, because these strategies only
take text and space into account, they can be inefficient for
queries with temporal constraints since an additional index
would be required to handle time.

Contributions. In this paper, we present ST2I, a Spatio-
Temporal Textual Index structure that supports the effi-
cient evaluation of both range and top-k queries with multi-
ple constraint types. It achieves this through a two-pronged
strategy. First, by using a single structure to index spa-
tial, temporal and textual attributes together, ST2I is able
to uniformly handle different constraint types and filter over
multiple dimensions simultaneously, thus, reducing the num-
ber of irrelevant documents retrieved and consequently, query
execution time. For example, it efficiently evaluates queries
such as Q4 and Q5 in Table, that contain textual, spatial
and temporal constraints. ST2I extends kd-trees in different
ways. Unlike traditional kd-tree implementations which are
optimized for in-memory access, ST2I was designed to sup-
port out-of-core query evaluation. It does so by employing
a block-based storage at the leaf node level. This approach
retains the flexibility of the kd-tree in supporting multiple
dimensions and at the same time scales to large data sets
that do not fit in main memory. The memory footprint of
the index can be tuned by setting the block size. Another
benefit of this structure is that it stores the data (in the
blocks) separately from the tree. The tree is thus small and
and can fit entirely in memory, speeding up the index look
up. As we discuss in Section 3, our implementation of ST2I
uses a compact representation for the tree, which further
reduces its memory requirements.

Second, to incorporate text into this structure, ST2I uses
an efficient technique to map textual information (terms)
into numbers. This mapping must be strictly monotone so
as to allow the inclusion of the mapped terms into a space-
partitioning structure such as the kd-tree. We employ two
algorithms to encode and decode the terms that have linear
complexity in the size of the terms. The encoding and de-
coding operations are context free and can be applied on the
fly, without requiring intermediate storage or hash tables. In
addition, the approach supports evolving collections, where
new terms are added dynamically.

We have implemented ST2I and experimentally compared
it against state-of-the-art indexing strategies using two real-
world data sets: Twitter (8.6GB) and Wikipedia (501MB).
ST2I outperforms all other strategies for index construction
time, requires a small memory footprint, and makes effi-
cient use of disk space. The experimental results also show
that our design decisions for the text mapping and the ex-
tensions to the kd-tree structure lead to substantial perfor-
mance gains. Last, but not least, ST2I leads to very fast
query processing times for both range and top-k queries,
scaling linearly with respect to the data size and outper-
forming existing indices by a large margin for queries with
multiple constraint types.

Our main contributions can be summarized as follows:

• We propose ST2I, an indexing strategy that efficiently
supports range and top-k queries containing textual, spa-
tial and temporal constraints. To the best of our knowl-
edge, ours is the first attempt to efficiently support such
queries.
• We introduce a variant of kd-tree structure designed to

support out-of-core query evaluation. The index structure
is compact and has low overhead for disk accesses.
• We perform an extensive evaluation against state-of-the-

art indices using real data sets and report results which
show the effectiveness and efficiency of our approach.

The remainder of this paper is organized as follows. Basic
definitions are given in Section 2. In Section 3, we present
the ST2I index structure, the text encoding method, in-
dex construction, and query processing algorithms for both
range and top-k queries. We discuss our experimental eval-
uation and results in Section 4. Related work is reviewed in
Section 5 and we conclude in Section 6, where we discuss the
limitations of ST2I and outline directions for future work.

2. DEFINITIONS
Given a collection of objects containing spatial, temporal

and textual components, and a query q, we aim to efficiently
identify the subset of the collection that satisfies q.

Data Model. Let D be a spatio-temporal textual data set.
A spatio-temporal-textual (stt) object o ∈ D is represented
as a tuple 〈o.id, o.s, o.t, o.doc〉 where: o.id is the object’s
unique id, o.s is the spatial component – a point in multi-
dimensional space; o.t is the temporal component – a time-
point ; and o.doc is the textual content associated with the
object, modeled as a bag-of-words 〈w1, w2, ..., wn〉, where n
is the number of distinct words in o.doc.

Query Model. We consider two classes of queries: range
and top-k queries. Given a range query rq = 〈s, t, text〉,
where rq.s, rq.t, and rq.text are a spatial region, a time
interval and a list of keywords, respectively, the result of rq



consists of all objects o ∈ D satisfying all constraints (i.e.,
o.s ∈ rq.s, o.t ∈ rq.t and o.doc contains all keywords in
rq.text). The queries Q1, Q3, Q4 in Table 1 are examples
of range queries.

Instead of retrieving all items that match the query con-
straints, a top-k query returns only the k best results based
on a scoring function (e.g., query Q5). A top-k query can be
represented as kq = 〈s, t, text, k〉. Similar to a range query
it has spatial, temporal and textual components, but it also
includes one additional parameter k; kq returns k objects
o ∈ D ranked according to a distance score.

Scoring for Top-K Queries. The spatial proximity dss(o, q)
between an object o and a query q is defined based on the
spatial relationship between them:

dss(o, q) = 1− dist(o.s, q.s)

ΓS
(1)

where dist(o.s, q.s) is the Euclidean distance between o.s and
q.s, and ΓS is the normalization factor, i.e., the maximum
Euclidean distance between two points in the dataset D.

The temporal relevance dst(o, q) between object o and a
query q is defined based on their temporal relationship:

dst(o, q) = 1− |o.t− q.t|
ΓT

(2)

where ΓT is the normalization factor, i.e., the difference be-
tween the smallest and largest time points in D.

The textual relevance dstext(o, q) between object o and
query q is defined based on the query semantics. In this
paper, we consider three cases:

• AND: If q.text ⊂ o.doc (i.e., o.doc must contain all key-
words in q.text), dstext(o, q) = 1, otherwise dstext(o, q) =
0.
• OR: If q.text ∩ o.doc 6= ∅ (i.e., o.doc must contain at

least one keyword in q.text), dstext(o, q) = 1, otherwise
dstext(o, q) = 0.
• Distance: dstext(o, q) is the distance between o.doc and
q.text. Several ranking functions can be employed, such
as the well-known cosine similarity or BM25 [25].

The overall distance score between an object o and a query
q can then be computed by combining the spatial, temporal,
and textual distances:

ds(o, q) = α× dss(o, q) +β× dst(o, q) + γ× dstext(o, q) (3)

where α, β and γ are normalization factors that represent
the importance of the spatial proximity, temporal and tex-
tual relevance, and α + β + γ = 1. These factors are user-
defined and input as parameters for each query.

3. INDEXING SPACE, TIME AND TEXT
Different index structures have been proposed to support

the efficient evaluation of spatial queries. While these struc-
tures can be easily extended to support temporal attributes,
the same is not true for textual attributes. Here, we propose
the use of a spatial data structure to uniformly handle space,
time, and text. We make use of a context-free text map-
ping algorithm to encode words into a numeric system, or
ids, while preserving their alphabetical order (Section 3.1).
This allows textual data to be treated as just another nu-
merical dimension of the index, enabling it to be efficiently
constructed and queried in a single pass over the data.

Spatial Data Structures. We considered different choices
for a spatial index structure, including kd-tree [7], R-tree [18],
quadtree [17], and grid index [27]. Quadtree and grid index
quickly become inefficient for large data sets that are not
uniformly distributed, especially in high-dimensional spaces.
R-tree-based indices (notably R∗-tree [6]) are known for
their robustness in the presence of data skew and suitability
for disk-based query processing. They are widely used in the
spatial extensions provided by database systems. However,
they have several drawbacks for high-dimensional spaces.
Since each index entry needs to store a minimum bounding
rectangle (MBR) for all of its child nodes, the size of MBRs
grows linearly as the number of dimensions increases, so
does the storage requirement. This translates into a smaller
number of indexing entries per block (i.e., the fanout) and
reduced efficiency in disk access [36]. The overlapping re-
gions among MBRs also grow rapidly with the increase in
the number of dimensions. This can lead to performance
degradation, as more false-positive nodes have to be read [9].
While it is possible to optimize R-trees for high-dimensional
data, i.e., minimizing overlapping regions while maximizing
coverage of MBRs, this problem is non-trivial and computa-
tionally expensive. Typically, good splitting strategies [9,18]
are quadratic with the number of dimensions, thus making
the index construction process less scalable.

A kd-tree [7] is a generalization of a binary search tree
used to organize points in k dimensional space. Each non-
leaf node splits the points in its sub-trees along a hyper-
plane. Similar to binary search tree, points to the left of
the defined hyper-plane are present in the left sub-tree and
points to the right of the defined hyper-plane are present in
the right sub-tree. The canonical way to select the splitting
hyper-plane is to cycle through each dimension, and split at
the median value of that dimension. This allows kd-trees
to support simultaneous filtering over multiple dimensions
without the overlapping and complex partitioning imposed
by R-trees. For these reasons, we selected a kd-tree-based
structure for ST2I. Kd-trees, however, cannot be used to
organize data types such as strings. In what follows, we
discuss how we addressed this problem.

3.1 Indexing Text
The canonical kd-tree supports indexing for geometric

points. In order to index textual data, terms (or keywords)
must be encoded as points and the encoding (mapping)
method must preserve the alphabetical ordering of the terms.
The encoding function f must thus be strictly monotone,
i.e., both bijective and monotonic:

• Bijective: For each word w, there exists one and only one
associated id f(w) and vice versa. This ensures that we
can search every word and that we can map back any
index result in the numeric space to the textual space.
• Monotonic: For each pair of words w1 and w2, if w1 comes

before w2 in the alphabetical order, then id(w1) < id(w2)
(e.g., id(apple) < id(apply)). Since our indexing struc-
ture relies on numeric comparisons to identify matching
objects, these comparisons must reflect real textual rela-
tions for the index to be meaningful.

A näıve approach would be to extract all distinct terms and
sort them before constructing index. Terms can be mapped
into their ranks, and a dictionary can be used during query
evaluation to translate terms in queries into their equiva-
lent order. However, this requires a full scan of the data



Algorithm 1: word to id and id to word algorithms

1 // s e t V to alphanumeric cha ra c t e r s
2 s t a t i c const char V [ ] =
3 ”0123456789 abcdefghi jklmnopqrstuvwxyz ” ;
4 // and |V| to the s i z e o f V exc lud ing the
5 // nul l−terminated charac t e r at the end
6 s t a t i c const i n t nV = s i z e o f ( V )−1;
7 s t a t i c const i n t m = 12 ; // max word length
8 u in t 64 t word_to_id ( const char ∗ word ) {
9 u in t 64 t id=0;

10 f o r ( i n t i=0; word [ i ] && i<m ; ++i )
11 id = id∗nV +
12 ( ( word [ i ]> ' 9 ' ) ?
13 ( word [ i ]− ' a '+10) : // l e t t e r s
14 ( word [ i ]− ' 0 ' ) ) ; // numbers
15 return id ;
16 }
17 void id_to_word ( u i n t 64 t id , char ∗ word ) {
18 word [ m ] = NULL ;
19 f o r ( i n t p=m−1; p>=0 && id ; id/=nV , −−p )
20 word [ p ] = V [ id%nV ] ;
21 }

and sorting a potentially large number of terms. The same
expensive process is also required for indexing new terms.

To avoid this inefficiency, we employ two mapping func-
tions for encoding and decoding text that can be applied
on the fly. As shown in Algorithm 1, the first algorithm,
word to id, does a single scan over an input string and con-
verts it into a number using the positional notation method.
Its complexity is O(m), where m is a constant representing
the maximum word length. The second algorithm, id to word,
is responsible for converting IDs back to words and also has
O(m) complexity. These algorithms are context-free and can
be computed on the fly efficiently without requiring inter-
mediate storage or hash tables.

Implementation Details. To design our encoding mecha-
nism, we took the following observations into account. First
of all, words in documents usually have a small number of
characters. For instance, the average word length for English
language is 5.1 [4]. Similar numbers are found in English
literature.1 The average word length in the Wikipedia and
Twitter data sets used in our experiments is 4.9 and 5.6, re-
spectively. Besides, the number of words having more than a
certain number of characters follow a power law distribution.
As Figure 1 shows, shorter words are more popular than
longer ones. Secondly, all English words can be expressed
by alphanumerics and a limited set of special symbols (e.g.,
hashtag (#) and hyphen (-)). Note that this is only a small
subset of the ASCII standard, and can be encoded using
fewer bits than the usual single-byte representation.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of characters

0.0
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0.4
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Figure 1: Power law dis-
tribution of word length.

The value of m (12)
was carefully chosen so that
the corresponding number
for any word of length
12 or less containing al-
phanumeric characters can
be stored using native 64-
bit numbers. Figure 1 shows
that less than one percent
of words in Twitter and
Wikipedia have more than
12 characters. Therefore we
choose to encode the first 12 characters of any word instead
of all characters. For example international and interna-
tionalization are encoded using the same number. At query

1http://languagelog.ldc.upenn.edu/nll/?p=3532

d = 1 (time)

d = 5 (time)
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KPoint
KPoint
KPoint
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KTree
root

left right
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KNode <median, pointer_to_left_child>

Figure 2: Structure of ST2I.

evaluation time, additional word comparisons are required
to return the correct results. As we discuss in Section 4.3,
the overhead for these comparisons is negligible. Note that
the mapping functions work for English and for languages
that use Latin characters, but they are not suitable for lan-
guages that contain non-latin characters.

3.2 The ST2I Index
The structure of ST2I is illustrated in Figure 2. It consists

of two parts: the tree (KTree) and the data (KBlocks).
KTree is similar to traditional kd-trees, but our implemen-
tation uses a more compact representation. There are two
types of nodes (KNodes): internal nodes and leaf nodes.
Each internal node stores the splitting point of the current
dimension and a pointer to the left child node. As we de-
scribe below, we store a single pointer for both left and right
child nodes. Each leaf node stores a pointer to a KBlock.
Even though internal nodes and leaf nodes have different
semantics, they are stored using the same data structure
(leaf nodes have splitting point value set to NULL). Each
KBlock is a fixed-length array of size B and stores a list
of KPoint objects. The KPoint for an object o ∈ D is
denoted as 〈o.id, o.s, o.t, word to id(w),meta〉, where w is a
term in o.doc. A KPoint consists of two parts. The first
part is a point in n-dimensional space, where n = k + 2, k
is the number of dimensions for the spatial component, and
the two additional dimensions correspond to the temporal
and textual components. The second part, which we call
meta, can be used to store additional information that can
vary for different data and query types (e.g., word frequency
or tf-idf in top-k queries). A KPoint is created for each
term in o.doc. While this leads to some redundancy – the
space and time components in o are repeated in all KPoints
corresponding to o, it enables ST2I to uniformly handle dif-
ferent query constraints and filter over multiple dimensions
simultaneously.

In Figure 2, the first level of KTree splits the data set by
time, i.e., the left part of the tree contains KPoints having
their time value less than the median, and the right part

http://languagelog.ldc.upenn.edu/nll/?p=3532


Algorithm 2: st2i build

1 Input: P, root, d
2
3 if |P | ≤ B
4 root.content← new Block(P )
5 return
6 cur d← d mod n % \ label{tc : mod}
7 tmp← get value(P, cur d)
8 median← nth element(tmp, |P |/2)
9 left← 0

10 right← (|P | − 1)
11 while left < right
12 while get value(P [left], cur d) ≤ median
13 left← left + 1
14 while get value(P [right], cur d) > median
15 right← right− 1
16 if left < right
17 swap(P [left], P [right])
18 root.median = median
19 st2i build(P [0...right], root.left, d + 1)
20 st2i build(P [right + 1...|P | − 1], root.left + 1, d + 1)
21
22 return

of the tree contains KPoints having a value greater than or
equal the median. Recursively, the data set is split on the
second level by latitude, third level by longitude, fourth level
by keyword (using word to id(keyword)), and on the fifth
level by time again. The process continues until the num-
ber of data points being considered is less than the KBlock
size B. In what follows, we discuss the advantages of ST2I
compared to other kd-tree variants [24,26].

Separation of the Tree Structure and Data. Together
with using a compact representation (see below), separating
the tree structure and data leads to a substantial reduction
in the size of the KTree. A KTree is usually orders of mag-
nitude smaller than the actual data, and thus, it can fit into
memory, allowing efficient traversal of the index. To derive
the answers to a query q, only KBlocks with data relevant
to q are accessed.

Compactness of Node Data. ST2I only requires 2 val-
ues (integers) per node, compared to 4 values used in [36],
and 3 values used in popular libraries like nanoflann [2] and
Spatial C++ Library [3]. Since we allocate space for the two
children of each node in a pair, we only need to store a single
pointer for both of them. This makes the index more com-
pact, leading to higher memory locality and faster traversal
time. As a point of reference, storing 2 values instead of 3
values saves over 2GB for a 100 million tweets data set (see
Section 4).

Flat Tree Data Structure. We use a single breadth-first
ordered array to store the KTree nodes. This is similar to
the storage method used for binary heaps. The root is stored
at position 0. A node stored at position i will have its left
child (if exists) stored at position 2 ∗ i+ 1 and its right child
at 2 ∗ i + 2. The array can be simply read sequentially as
deeper levels of KTree are traversed. As we describe below,
our KTree construction algorithm stores KNodes in the same
order as the traversal algorithm accesses them. Combined
with the fact that non-leaf and leaf nodes use the same data
structure, this method results in a compact storage with
high-locality of access and low disk overhead.

Use of Memory-Mapped Files. Since ST2I uses a flat
tree data structure and node size is fixed, the approximate
location of any node can be calculated efficiently. To support
out-of-core queries seamlessly, in our implementation, we
make use of 64-bit memory-mapped files that are available

Algorithm 3: st2i search

1 Input: q, root
2 C ← {}
3
4 if q.t = ∅
5 C ← C ∩ st2i traverse(q, root, 0)
6 else
7 for each w ∈ q.keywords
8 idw ← word to id(w)
9 qw ← 〈q.p, idw〉

10 C ← C ∩ st2i traverse(qw, root, 0)
11
12 return st2i process(C)

in current operating systems. By using kernel-space mapped
files, we avoid making copies of data in user-space and leave
the memory management to the OS.

Complexity. The KTree is balanced: each level of the
KTree is split at the median value of each splitting plane,
thus the available data points are partitioned equally be-
tween the left and right child. Recall that the ST2I uses
a block-based storage [26, 28] at the leaf nodes. This is in
contrast to the original kd-tree design, where each leaf node
links to a single record. This modification allows our data
structure to align better with external memory models. In
addition, we also use an implicit strategy of dimension in-
terleaving to decide which axis to be split at each level. The
benefits are twofold: this improves worst-case complexity for
skewed data sets and reduces the storage cost of the KNodes.
Let N be the number of data points and B be the maximum
number of points per leaf, the maximum depth and the max-
imum number of nodes in the KTree are k log(N

B
) and N

B
,

respectively.
In summary, the benefits of ST2I are: (1) since data points

are stored in blocks, it is I/O friendly with a small foot-
print; (2) it is cache friendly, because nodes are stored in
a breadth-first order array relevant KPoints are likely to be
loaded together; and (3) the index structure can be accessed
quickly through memory-mapped files leading to increased
performance and seamless support for disk-based storage.

3.3 Index Construction
Index construction is accomplished by two algorithms:

Point Creation and Tree Construction. Point Creation makes
a single scan through data set D and converts each spatio-
temporal textual object o into a list P of KPoints. Unlike
other approaches, this algorithm requires no prior knowledge
of (or statistics about) the data set. The second algorithm,
Tree Construction, uses the list P of KPoints as input and
constructs the KTree. Tree Construction is similar to the
canonical k-d tree construction, but since we use a linear
selection algorithm [10] to find the median value for each
splitting plane, it requires much less time to process each
dimension (O(N) instead of O(N logN)).

The Tree Construction, st2i build (Algorithm 2) receives
as inputs the Point array P , the root node and the depth d
of the subtree it is building. It uses two additional parame-
ters: n, the number of dimensions (n = k + 2); and B, the
KBlock size. The algorithm iterates over the dimensions in
the n-dimensional space. In lines 7 and 8, the keys corre-
sponding to the current dimension are extracted and their
median value computed. Lines 9 to 17 perform in-place
swappings on P to partition all points around the pivoting
median point. Lines 19 to 20 recursively construct the left
and right subtrees of the next dimension.



Algorithm 4: st2i traverse

1 Input: q, root, d
2
3 if root.content 6= ∅
4 return root.content
5 C ← {}
6 cur d← d mod n % \ label{tc : mod}
7 if (−∞, root.median] ∩ get value(q, cur d) 6= ∅
8 C ← C ∩ st2i traverse(q, root.left, d + 1)
9 if (root.median,∞) ∩ get value(q, cur d) 6= ∅

10 C ← C ∩ st2i traverse(q, root.left + 1, d + 1)
11
12 return C

Top-k Query Support. Different from range queries, to
process top-k queries the algorithm needs to rank each can-
didate based on the scoring function. Since the textual rele-
vance function requires word frequency, we make use of the
meta field of KPoint to store relative frequency of each word
in each object’s document.

Complexity. st2i build works in a divide-and-conquer
fashion similar to quicksort, but it always performs balanced
partitioning. For each partition, the complexity is linear,
bounded by the selection algorithm and the swapping pro-
cess. Let M = N

B
be the number of leaf nodes in our k-d tree,

the amortized cost of building the index structure at each
dimension would be exactly O(M). Since there is approxi-
mately k log(M) levels, the total complexity of st2i build
is O(kM log(M)).

3.4 Query Processing
Since the spatial, temporal, and textual components of

each object are integrated in the ST2I structure, the query
processing algorithm can map any spatio-temporal keyword
query into a range search query regardless of search criteria.
To reduce the query processing time, the algorithm reads
and navigates the tree in the same order as it stored. For
each query, ST2I starts from the root of KTree and moves
down recursively, similar to the process used for index con-
struction. At each level of the KTree, the algorithm goes
left or right depending on the split value of the current node
and the value of the query constraint in the current dimen-
sion. When a leaf-node is reached, all KPoints in the KBlock
linked from it are added to the candidate list. After the al-
gorithm finishes traversing the KTree, each KPoint in the
candidate list is evaluated to check whether it satisfies all
query constraints. The algorithm then outputs the valid
results. Evaluation of range queries and top-k queries are
described below. For top-k queries, early termination and
candidate ranking strategies are employed to yield better
overall performance.

Range Query Processing. Single-term and multiple-term
queries are evaluated in a similar fashion. For each keyword
w in q.keywords, st2i search (Algorithm 3) converts it into
idw using the word to id algorithm and creates an individ-
ual range search query qw from q.s, q.t and idw. Then, for
each qw, st2i search traverses KTree, generates the candi-
date KPoints (using Algorithm 4 st2i traverse), and adds
them to the global candidate set C. Finally, depending on
the textual relevance function being used, st2i search ei-
ther intersects, unions or calculates the similarity score for
candidates from different keywords, and outputs the final
results.

Algorithm 4 details the st2i traverse procedure. In ad-
dition to the search query q and the current node root,

Algorithm 5: topk st2i search

1 Input: q, root
2 outer upperbound← 1
3 topk lowerbound← 0
4 cur layer ← 1
5 TOPK ← {}
6
7 while topk lowerbound < outer upperbound
8 cur radius← cur layer × STEP
9 update radius of q based on cur radius

10 for each w ∈ q.t
11 idw ← word to id(w)
12 qw ← 〈q.p, idw〉
13 C ← C ∩ st2i traverse(qw, root, 0)
14 for each c ∈ C
15 compute combined score of c
16 append c to TOPK
17 update outer upperbound
18 update topk lowerbound of TOPK
19 cur layer ← cur layer + 1
20
21 return TOPK

st2i traverse also keeps track of the current depth d. Lines 3
and 4 check if a leaf-node has been reached. If so, all points
in the linked block are returned as candidates. Otherwise,
lines 7 to 10 compare the value of the current node (i.e.,
root.median) with the value for the query constraint in the
split dimension cur d, and recursively traverse left, right or
both, until a leaf-node is reached.

Top-k Query Processing. The key idea behind the opti-
mization techniques for spatial top-k queries is to partition
the search space into layers relative to the position specified
in the search query. Then, the algorithm only retrieves and
validates candidates one layer at a time, thus avoiding com-
putation and validation for answers not among the top-k.
For each layer, we need to compute the lower bound of the
top-k candidate list and the upper bound of all other points
outside of the layer. The algorithm stops when the lower
bound from the top-k is larger than the upper bound of the
remaining points.

In Algorithm 5, we present a variant of st2i search called
topk st2i search to support top-k queries. TOPK is a pri-
ority queue that stores the current best q.k objects as well as
the upper bounds and lower bounds of its members. In each
iteration, topk st2i search expands the current search ra-
dius by STEP – the unit size of the divided spatial layers.
Assuming that the spatial search space is divided into η lay-
ers (i.e., it takes η iterations to go over all points in the

search space), STEP = ΓS
η

. Then for each keyword in the
query, topk st2i search traverses through the KTree and
yields candidate list. The score for each candidate c is cal-
culated by a scoring function and the pair 〈c, score(c)〉 is
added to TOPK. At the end of each iteration, the lower
bound of TOPK and the upper bound of the outer layer
are updated. The upper bound of outer layer is calculated
based on the upper bound of the spatial proximity, temporal
relevance and textual relevance as follows:

outer upperbound = α×(1− cur radius
ΓS

)+β×1+γ×1 (4)

where α× (1− cur radius
ΓS

) is the maximum score of any ob-

jects in the next layer; β×1 and γ×1 are the maximum pos-
sible temporal relevance and textual relevance, respectively.
The algorithm terminates when the maximum possible score
of any object in the outer layer is smaller than the minimum
score of all elements in TOPK.
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Figure 3: Index construction performance for Twitter data sets.

4. EXPERIMENTAL EVALUATION
To assess the efficiency of ST2I, we compare its perfor-

mance against state-of-the art techniques using real-world
data sets collected from Twitter and Wikipedia. We con-
sider different aspects, including index construction, mem-
ory footprint, disk space and query processing time. We also
study the effectiveness of our design decisions, in particular,
the block-based structure and text-encoding mechanism.

4.1 Experimental Setup
State-of-the Art Approaches. We compared ST2I to dif-
ferent strategies for both range and top-k queries: RCA [34],
a textual-first index that uses space filling curves for spatial
components; SFC-QUAD [13], a spatial-first index that uses
quadtree for spatial components and space filling curves for
textual components; and Lucene 4.10.3 [1], an open-source
index that uses separate data structures for spatial, tempo-
ral and textual components. RCA was designed to process
top-k queries and were shown to be the best performing
strategy [34]. SFC-QUAD was shown to be the best per-
forming strategy for range queries [12].

Not all approaches are optimized for all types of queries
or support all constraint types. For example both RCA and
SFC-QUAD do not support temporal constraints. RCA is
optimized for top-k queries and SFC-QUAD is optimized
for range queries. Therefore, to ensure a fair comparison,
we tested each approach only with queries they support and
optimize. We evaluated the SFC-QUAD implementation by
Chen et al. [12]. Implementations for the other approaches
were obtained directly from their authors.

Hardware and Software Configuration. We conducted
experiments on a PC with dual Intel Xeon E5-2695 2.4GHz
processors–12 cores in total, 16 TB of disk space and 128
GB of main memory. The OS used was Fedora 19 kernel
version 3.14.19-100. ST2I was implemented in C++ and was
compiled using GCC 4.4.6. Other approaches were compiled
using Oracle Java 1.7.0 25. We placed no CPU, memory
or I/O restrictions.

Data Sets. We experimented with two data sets. The
Wikipedia data set contains 538,176 Wikipedia articles with
geo-location extracted from Wikipedia database dumps on
August 11, 2014.2 The Twitter data set contains 100 million
geo-tagged tweets collected using the Twitter Public Stream
API3 over the course of 2 months (April - May, 2014). De-
tails about the data sets are given in Table 2.

Queries. Since there are no publicly available workloads
for spatial-temporal-keyword queries, we generated our own.
First, keywords and spatial locations with different levels

2https://dumps.wikimedia.org/enwiki/20140811
3https://dev.twitter.com/streaming/public

Table 2: Properties of data sets used in evaluation.

Data Set Objects Distinct
words

Distinct words
per object

Size

Twitter 100,000,000 6,774,156 6.54 8.6 GB
Wikipedia 538,176 1,175,293 128.96 501 MB

of popularity were selected and put into separate candidate
pools. We then created different query workloads that corre-
spond to different combinations of spatial and textual popu-
larity levels: EASY (i.e., unpopular locations and unpopular
keywords) and HARD (i.e., popular locations and popular
keywords). Query workloads that have other combinations
of locations and keywords yield similar results as EASY and
HARD workloads and have been omitted. This workload al-
lows us to study the behavior of the indexing strategies for a
wide range of queries with varying selectivity for the differ-
ent dimensions. Additional parameters were generated for
range and top-k queries. We executed each query workload
and took the average query time for each index. Querying
times are measured in milliseconds and do not include index
loading time.

4.2 Index Construction
For each approach, we measured the index construction

time, memory footprint and disk space usage. The results
for the Wikipedia data set are summarized in Table 3. For
the Twitter data set, we also studied the scalability of the
approaches by varying the data size from 20 to 100 million
tweets. The results are shown in Figure 3.

Construction Time. Figure 3a shows the time (in log
scale) each strategy needed to build indices for different data
sizes. The time is measured in minutes and includes the
time for loading data, building index, and writing index to
disk. ST2I outperforms all other strategies. The scalabil-
ity obtained by ST2I can be attributed to the context-free
text mapping algorithm and the unified kd-tree structure.
For instance, ST2I took 10 minutes to build the index for
100 million tweets – 4 times faster than Lucene, which took
47 minutes. Lucene needs to build separate structures for
spatial, temporal and textual components. RCA, which is
a textual-first approach, creates a spatial structure for ev-
ery keyword, thus requiring massive amount of memory and
a large number of disk access. SFC-QUAD does not scale
well as the data increase. Its construction algorithm spends
substantial time arranging documents into Z-order, before
building a standard block-compressed inverted index; this
compression also slows down the construction process.

Memory Footprint. Figure 3b shows the memory foot-
print (in GB) for each index during construction. We pe-
riodically measured the memory footprint and selected the
peak value. Lucene has the smallest footprint, as a result of

https://dumps.wikimedia.org/enwiki/20140811
https://dev.twitter.com/streaming/public


Table 3: Index construction on Wikipedia data set.

Approach Building
time (mins)

Memory foot-
print (GB)

Disk space
(GB)

ST2I 0.8m 2.9 1.92
RCA 11.9m 19.2 5.9

Lucene 1.25m 0.7 0.56
SFC-QUAD 222.4m 10.59 1.4

regularly compressing and writing data to disk. ST2I used
approximately 2.5 times the size of original data sets, as we
use in-place sorting when creating k-d tree. RCA and SFC-
QUAD required substantially more memory, especially for
large data sets – RCA needs to maintain a spatial structure
for every word and SFC-QUAD needs to reassign all object
IDs based on their locations on the Z-curve.

Disk Space Usage. In Figure 3c, we show the disk space
requirements for each index. All indices show a linear behav-
ior for disk space usage as the data grows. Lucene requires
the least amount of disk space. This can be attributed to the
fact that Lucene uses LZ4 algorithm to compress data be-
fore writing to disk. However, this negatively affects the in-
dex construction time as well as the query processing times.
SFC-QUAD also uses a compression algorithm called OPT-
PFD to store object IDs and word frequencies in blocks,
thus, effectively reducing the disk space usage. ST2I used
less than half of the space required by RCA.

4.3 Impact of Index Design
To understand the impact of our design choices, we eval-

uated each individually and measured the corresponding
speedup in index construction, query processing, and space
usage.

Text Mapping. In addition to our context-free text map-
ping algorithm, ST2I can work with any other monotonic
function. For instance, a straightforward approach would be
to extract all distinct terms, sort them and map each term
into its corresponding position in the list. This approach
requires an additional full scan of the data, what negatively
impacts the index construction time: the time required to
build index increases by 51.21% (from 10m17s to 15m37s).
Furthermore, this approach is not update friendly: the index
to be re-constructed from scratch if data with new terms are
added.

Compactness of Node Data. ST2I uses an implicit split-
ting strategy and a breadth-first order array, thus, it only
needs to store a pointer to the left child in the KNode – the
pointer to the right child will always be the subsequent item
in the list. When we disable the implicit splitting strategy,
each node on KTree needs to store the split value, left and
right pointers. As a result, the size of KTree is increased by
50% (from 0.96GB to 1.5GB). The breadth-first order array
also helps reduce the processing time for both range queries
(36.98%) and top-k queries (23.96%).

Block-Based Data Access. The size and depth of the
KTree depend on number of data points B stored in each
block. For our experiments, we used B = 32. When we
disabled the block-based data access, the size of KTree in-
creased 21.87 times (from 0.96GB to 21GB). A larger KTree
also leads to slower query processing time (3.78 times slower
for range queries and 2.52 times for top-k queries).

Long Keywords. In order to measure the overhead of
additional comparisons for longer keywords, we generated
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Figure 4: Performance of range queries on EASY
(a, c, e) and HARD (b, d, f) workloads on Twitter
data sets.

1000 random 2-keyword queries with terms consisting of
more than 12 characters and compared the average query
processing time of ST2I with its modified version where we
used 128-bit integers to encode words. Experiment results
showed that query processing time only increased by 1.57%.

4.4 Performance of Range Queries
We compared the query evaluation performance of ST2I

against Lucene and SFC-QUAD using the Twitter data set.
RCA is not included in this evaluation since it was designed
for top-k queries.

Queries. We created a workload consisting of 1000 unique
queries, where each query contains 2 keywords (combined
with AND semantics) and covers a 30km radius. We then
created additional workloads by varying the number of key-
words and radius size for the queries, as well as different com-
binations of spatial-temporal popularity levels (Section 4.1).
Since SFC-QUAD was not designed to handle temporal con-
straints, the default workload used to compare all approaches
only contains spatial and textual constraints. Different tem-
poral constraints were used to compare ST2I and Lucene.

Results. Figure 4 shows results for EASY and HARD
workloads. In general, ST2I performed better than Lucene
and SFC-QUAD, especially for HARD queries. This is due
to the simultaneous filtering over multiple dimensions: queries
with both spatial and textual constraints are evaluated con-
siderably faster than spatial or textual alone. Figure 4 also
shows results of ST2I, Lucene and SFC-QUAD with different
query variations on the whole Twitter data set. Querying
times for ST2I are smaller than Lucene and SFC-QUAD by
a wide margin. In all experiments, query performance of
ST2I is proportional to the number of disk I/Os.
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Figure 5: Performance of top-k queries on EASY (a,
c) and HARD (b, d) workloads on Twitter data sets.

Table 4: Top-k queries on Wikipedia data set.

Approach EASY EASY (I/O) HARD HARD (I/O)
ST2I 45.570ms 0.92MB 50.434ms 0.88MB
RCA 61.685ms 0.18MB 174.504ms 0.41MB

Lucene 714.365ms 0.36MB 3996.813ms 0.38MB

4.5 Performance of Top-k Queries
We compared query evaluation performance for all ap-

proaches that support top-k queries using both the Twitter
and Wikipedia data sets. Since RCA does not support tem-
poral constraints, we only generated queries with spatial and
textual constraints.

Queries. We created a workload consisting of 1000 unique
queries, where each query contains 2 keywords, a location,
and default query parameters k = 50, γ = 0.3. The textual
relevance semantic used was COSINE. We created addi-
tional workloads by varying k and number of keywords.

Results. Figure 5 shows the query processing times for
each approach with different query workloads on the Twit-
ter data set. Results on Wikipedia data set are summarized
in Table 4. ST2I and RCA show comparable performance
on EASY workload. On HARD workload, ST2I performed
much better than other approaches. For instance, ST2I took
170ms on average to return the top 50 tweets, while RCA
and Lucene took 2,021ms and 85,324ms, respectively. The
results show the benefit of using a single index for spatial,
temporal and textual components, and the benefit of simul-
taneous filtering over multiple dimensions. All other ap-
proaches select all objects that match textual constraints be-
fore applying spatial constraints. When keywords are popu-
lar, the number of objects that matches textual constraints
increases exponentially.

Note that in Figure 5, the number of disk I/Os does not
correlate with the query processing time. The reason is that
the time required for disk I/O access is considerably smaller
than the query processing time; disk I/O is not a bottleneck
in all approaches (we have validated this information by an-
alyzing the iowait times reported by the OS that showed to
be negligible during the query executions). Thus, the effect
of disk I/O on the overall query processing performance is
very small.

5. RELATED WORK
Early works on spatio-temporal textual indexing used sep-

arate data structures for space, time and text [30,32]. How-
ever, no performance results were reported. Cozza et al. [15]
used PostgreSQL/PostGIS to index geo-tagged tweets. Since
PostgreSQL does not provide built-in top-k query process-
ing and the reported performance is several orders of mag-
nitude slower than ST2I, we did not include PostgreSQL in
our comparison.

While both spatial and temporal indexes have been exten-
sively studied in the literature, temporal and spatial issues
were treated independently. To the best of our knowledge,
ST2I is the first attempt to create an integrated spatio-
temporal textual index.

Spatial Keyword Index. Numerous spatial keyword in-
dexing strategies have been introduced in the past few years.
Chen et al. [12] carried out a comprehensive experimental
evaluation of 12 state-of-the-art strategies. In general, these
strategies can be categorized into three main types: spatial-
first, text-first, and combined. Spatial-first indices organize
spatial components into spatial data structures such as IR2-
tree [16], R-tree [11], IR-tree [23], and WIBR-tree [33]. Tex-
tual components are inserted into spatial tree nodes or grid
cells, in various formats such as inverted lists [11, 23] and
inverted bitmaps [16, 33]. Christoforaki et al. [13] used a
quadtree for spatial components and space filling curves for
document IDs. They also compressed the document ID and
object frequencies in inverted lists. A major drawback of
spatial-first indices is that they are very sensitive to the
spatial constraints. These approaches are not optimized
for queries without a spatial constraint or with spatial con-
straints that have low selectivity, regardless of their textual
constraints. ST2I does not suffer from this problem since all
constraints types are considered for filtering the results.

Khodaei et al. [22] introduced a combined index called
SKIF which stores both spatial and textual components in
an inverted list. Spatial components are organized into cells,
and each cell is represented by an entry in the inverted list.
Unfortunately, this approach is prone to data skew and scal-
ability issues because of the grid structure. In contrast,
by adopting a hierarchical space-partitioning data structure,
ST2I avoids these issues.

Several text-first indices have been proposed to support
top-k spatial keyword queries [12]. Text-first indices use
inverted lists to store documents and use spatial data struc-
tures for the spatial components. Rocha et al. [29] used an
R-tree to store spatial components for frequent keywords
and a flat list for infrequent keywords. Zhang et al. pro-
posed the use of a quadtree [35] and Z-order encoding [34].
They also introduced score-bounded access to both textual
and spatial components. Similar to spatial-first, text-first
indices are not suitable for queries with complex spatial-
temporal constraints.

Temporal Keyword Index. A number of approaches
have been proposed that support temporal keyword queries.
Berberich et al. [8] proposed a technique that supports tem-
poral range queries. Their goal was to provide a better
response time than a sequential scan by allowing efficient
access to documents within the query time range. Jin et
al. [20] proposed several indices based on inverted files, B+-
tree and MAP-21 triple index. For each query, they retrieved
candidates from each index separately and merged them to



produce final results. However none of their ranking func-
tions took into account the temporal relevance score.

Khodaei et al. [21] proposed a temporal-textual index
structure called T2I2 that combines both temporal and tex-
tual components into an inverted list. Textual components
are organized into cells and each cell is represented by an
entry in the inverted list. As with any grid structure, this
approach is also prone to data skew besides having a large
storage requirement. He et al. [19] introduced methods to
provide better support for querying over versioned docu-
ments. They studied different partitioning methods to orga-
nize documents by time. It is not clear how these specialized
indices can efficiently support spatial constraints.

6. CONCLUSIONS
In this paper, we introduced ST2I, a new indexing strat-

egy that uniformly handles text, space and time in a single
structure. ST2I uses context-free text mapping algorithms
to encode words in text as numbers, and a block-based kd-
tree structure embedded in a breadth-first order layout that
has a space requirement up to 50% smaller than current
techniques. This effectively increases the memory locality,
leading to better querying performance and enabling larger
data sets to be indexed. The flat memory structure also al-
lows us to take advantage of 64-bit memory mapped files to
significantly reduce overhead for serving queries from disks.
Our experimental results show that ST2I performs uniformly
better than the other approaches: it is substantially faster
for both index construction and query evaluation, and it
also has smaller memory footprints and storage requirements
than most approaches.

In future work, we intend to improve performance of ST2I
by exploiting the parallelism supported by multiple CPU
cores, exploring efficient update approaches and develop-
ing a variable-bitrate encoding to support longer terms and
larger character set.
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