
Visualization and Analysis of Parallel Dataflow
Execution with Smart Traces

Daniel K. Osmari, Huy T. Vo, Cláudio T. Silva
Polytechnic School of Engineering

New York University

João L. D. Comba
Instituto de Informática

UFRGS

Lauro Lins
AT&T Research

Fig. 1. Smart Trace visualization for an edge detection dataflow: (top) Gantt chart displaying a parallel trace collected with time-varying state data for each
execution unit (top three rows are GPU devices, bottom 3 rows are CPU threads). The colors in the Gantt chart are associated to modules of the pipeline.
(bottom) display of five intervals of the Gantt chart inside each module of the dataflow, thus allowing the performance of each module to be analysed separately.

Abstract—Most performance analysis tools focus on presenting
an overload of details, with little application-dependent structure,
and predefined statistical summaries. This makes the complex
relations present in a parallel program not directly recognizable
to the user, making the task of identifying performance issues
more costly in both time and effort. In this work we investigate
the requirements to create visualizations of execution traces of
parallel programs modeled as dataflows. We propose the Smart
Trace (ST) concept, to encode the structure of the data, and guide
the construction of specialized visualizations. A visualization tool
can then leverage the relationships in the data to automate a given
analysis task. We show with examples the power and flexibility
of visualizations we can create to address specific questions
formulated about the analysis of the data, with emphasis in
parallel dataflow traces.

Keywords-Trace visualization; Parallel computing.

I. INTRODUCTION

Parallel computation in its many different forms is essential
to improve performance of computational tasks. Such compu-
tation power was the target of extensive research in the past,
where seminal work in parallel computation was developed.
However, its widespread use only become common recently,
with the rise of multi-core CPUs, many-core GPUs, and com-
puter clusters at affordable prices. Each of these configurations

have aspects that impact performance, and leveraging the
benefits of parallel computation is still a challenging task.

An important aspect is the post-analysis of computational
traces generated upon execution of a parallel program. A
parallel trace records a time-series of information about re-
source utilization and activation procedures during program
execution. Trace analysis was discussed in [1]–[4], which
identified the value of visualization to help understand the
complex interplay of information in trace data. For this pur-
pose a Gantt chart is often used, which corresponds to a
2D time-series graph that displays in which processing unit
a task is executing in a given instance of time. Information
visualization techniques developed along the years and the
diversity of parallel computation power available today allows
the visualization and analysis of parallel traces to be revisited.

In this work we introduce Smart Traces (ST), a new concept
that aims at producing insightful visualizations of parallel trace
data generated in dataflow systems. We used STs to evaluate
Hyperflow [5], a parallel dataflow framework developed for
leveraging the parallel power of heterogeneous systems. STs
was designed to address several challenges raised by this
analysis. Trace data encodes complex relationships among
computational resources in time (e.g. processors, tasks, mem-

2014 27th SIBGRAPI Conference on Graphics, Patterns and Images

1530-1834/14 $31.00 © 2014 IEEE

DOI 10.1109/SIBGRAPI.2014.2

165

ory transfers, etc), which need to be grouped and inspected
in different ways, sometimes in isolated visualizations, but
most frequently as coupled visualizations. We designed a
trace representation augmented with dataflow semantics to
allows trace visualization and analysis. Furthermore, while it
is easy to visually accommodate the individual of trace data
for dozens of processing units, the growing number of parallel
execution units available increases the amount of information
to be displayed. Therefore, strategies to collapse time-series
data into meaningful representations are required (e.g. Theme
Rivers [6], Stacked Graphs [7], Edge Bundles [8] or Word
Lines [9]). An example of ST is given in Figure 1.

The main contributions of this work are outlined below:
• A trace format augmented with dataflow information suit-

able for mapping information visualization techniques;
• The concept of STs, which correspond to coupled views

of dataflow trace data;
• A predefined set of STs that allow immediate visualiza-

tions to be constructed directly from trace data.

II. RELATED WORK

We summarize in different sections the literature that discuss
several aspects related to parallel trace visualization.

Visualization of Parallel Systems

The Paragraph system [1] was one of the earliest work
to identify the importance of visualization techniques to un-
derstand trace information in parallel systems. It raised the
importance of creating an animation that reflects the dy-
namic behavior of trace, communication, task, and application-
specific displays. To our knowledge, it is the first work
that uses Gantt charts [10] to visualize time-series data of
resource against task usage. In [2], [3] the ideas of Paragraph
are expanded, with emphasis in user interface aspects that
allow for multiple views of the data. In [4] it is discussed
design goals for trace visualization. Message-passing protocols
led to specifically-designed visualizations to understand the
performance of such protocols. The Viper [11] system uses a
standard set of views to inspect a given aspect of the parallel
program state: animation, space-time or variables view. A
system with focus more into data-parallel visualization than
performance is described in [12], with emphasis on a system
that could handle traces interactively. MPI trace visualization
is first discussed in [13] and further elaborated in [14]–
[16]. Common to these work is the use of Gantt charts to
evaluate thread and CPU activities. Tracevis [17] designed
search criteria to inspect trace data in certain regions, as well
the ability to annotate traces with persistent information. The
Vampir NG system [18] offers a client-server solution coupled
with a compressed data structure to handle large trace data.
Augmenting trace information with meta-data is also described
in [19] with the purpose of obtaining analytical performance
models of MPI programs. Data Flow Tomography [20] is a
system that uses virtual machines with special instructions to
track data movement and usage. The DIMVisual model [21]
allows the integration of trace data in a distributed system, with

subsequent treemap [22] and 3D visualization [23] approaches
for grid monitoring and its respective network topology.
In [24] Gantt charts are augmented with links between tasks to
show interconnections in parallel applications. In [25] function
calls are presented on Gantt charts with discretization and
non-linear scaling of time, to facilitated identifying functions
through visual patterns.

Visualization Techniques for Time-series Data

Summary graphs, such as histograms of function call counts
or pie chart distribution of time spent in each module, are
used in the visualization of trace data. Gantt charts [10]
offer a display of a time-series of information with individual
processor utilization, but becomes too dense when the number
of resources is too large There are several techniques that
address more compact or more expressive visualization of
time series data. Approaches like Theme Rivers [6] or Stacked
Graphs [7] compact information using the semantic data of the
time-series to adjust the thickness of the stack with respect
to a given baseline. Hierarchical Edge Bundles [26] apply the
idea of edge bundles [8] to compact trace information, such as
activation call relations. The graphical perception of different
time-series visualization is described in [27], with pros and
cons of each method with respect to certain tasks.

Coordinated and Multiple Views

Filtering, grouping and summarizing allow for compacting
information into a smaller display area while still showing
relevant information. However, to capture the different aspects
of data, in particular the complex interplay of trace informa-
tion, it becomes necessary to combine multiple visualizations
into a common linked (or coupled) view [28]–[30]. Recent
work in the area include Matchmaker [31], which groups
multi-dimensional datasets, Word Lines [9], which control
multiple simulation runs, and behaviorism [32], which create
visualizations for dynamic data and its interconnections.

The ST implementation relies on a collection of interactive
information visualization Python scripts implementing coor-
dinated views, allowing the user to directly interact with the
data to refine the visualizations, either by zooming in and in-
specting values, or applying different visualization techniques.
More details are given in the supplementary material.

III. PARALLEL DATAFLOW INSTRUMENTATION

We define below the characteristics of a parallel dataflow
system, and how the execution trace data is collected.

A. Parallel Dataflow Model

A dataflow is a directed graph where each node corresponds
to a module whose execution depends only on its inputs, and
interaction between modules happens by data exchange. Each
input parameter and output result in a module is denominated
a “port”. Output ports are connected to input ports, defining
the topology of the pipeline of the dataflow as edges of the
graph. An input triggers a series of computations and data
communication down the pipeline.

166

Parallel Data�ow
Execution

A

C

D

B

tasks
Smart Trace
Collection

user

Smart Trace Visualization

Stacked Line GraphGantt Chart Scatter Plot

Smart Trace Composition and Exploration

stream

trace session

module

task

execution

execution connection

module connection

...

Pre-de�ned Smart Traces

Fig. 2. ST Architecture. A parallel dataflow executes multiple tasks, and the trace execution is collected into a ST collection, which consists of trace data
augmented with dataflow information. The ST exploration relies on visualization tools or predefined constructions to define a view of the trace collection.

In a sequential execution environment the dataflow is topo-
logically sorted, guaranteeing that a module is executed only
after its dependencies have executed. In parallel systems it is
desirable to have multiple threads or processes to execute mod-
ules in parallel. There are many approaches for implementing
a parallel dataflow architecture, but they require non-trivial
coordination among threads and processes to make optimal
use of resources. This coordination is usually performed by
a scheduler, responsible for assigning tasks to modules, and
for starting their execution. The scheduler can offer some
guarantees, such as order of execution, real-time constraints,
maximum number of resources to be allocated, etc, at the cost
of a more complex and time-consuming implementation.

B. Code Instrumentation

The execution trace consists of time-stamp events collected
by code instrumentation at specific points of interest. Code
instrumentation can be performed at different levels-of-detail;
in our analysis we concentrate on events related to dataflow
execution. Automated tools for code instrumentation (e.g.
DTrace [33], Vampir [34], TAU [35]) offer a more fine-
grained and low-level collection than desired, which requires
a filtering step to ignore uninteresting events, while being
limited in the information that can be collected. Therefore,
we decided for creating a customized code instrumentation
that can specifically address important events during dataflow
execution. Our analysis focuses on three types of events:
• Execution: represents the time a thread spent executing a
unit of work, which can be either a function in the code, or a
pipeline module in a dataflow. The execution is delimited by
two events, marking the beginning and end of execution;
• Variable update: represents any variable with value updated
during execution. It’s recorded by a single event containing the
variable identifier and its new value;
• Communication: represents data dependencies or synchro-
nization operations, represented by send/receive event pairs. It
is often difficult to register the entities involved in the message
exchange without actually changing the data being transmitted.

The instrumentation can be implemented entirely on the
dataflow framework, hidden from the application code. We
collect meta-data describing the dataflow network. Data trans-

fers between modules can be encoded as send/receive events,
since every event references the task that produced it.

IV. SMART TRACES

In this section we introduce the ST abstraction and describe
how it helps the user in creating customized visualizations of
trace data. The concept is implemented in interactive Python
scripts, making full use of its dynamic environment, where
code and data can be created and updated at any time to create
linked visualizations. The process of creating a ST visualiza-
tion proceeds as illustrated in Figure 2. As the execution trace
of a parallel dataflow is recorded using code instrumentation,
trace data is augmented with dataflow information, resulting
in what we call a ST collection. This data is imported into an
interactive application where the user can analyze the data by
creating views of the data, called STs.

A. Smart Trace Collection

A ST collection consists of the trace data enriched with
derived entities that interpret the meta-data. Each entity is
instanced as a Python object that presents the derived relation-
ships and aggregations explicitly, making the data exploration
more convenient. The entities are:
• State change: actual raw data explicitly recorded in the
execution trace. In addition to start and finish times for each
module execution, it references the computation unit where
it was executed (stream), predecessor and successor events
according to both the pipeline and the stream, task being
processed, and also application-specific information;
• Stream: associated to a system thread, process, or CPU.
Contains start and finish times, references to events executed
underneath it, and the trace session;
• Trace Session: global execution of the program, containing
per-application metadata;
• Task: execution of one input across the whole pipeline. It
contains attributes such as start and finish times, as well as
any application-specific attributes describing the initial input
and final output of the pipeline;
• Module: one pipeline stage, with references to its prede-
cessors and successors in the pipeline. It references all state
changes inside the module, with statistic summaries;

167

• State change connection: data transfer between two mod-
ules during the execution of a specific task. It contains links
information about the difference in time between the end of
execution of previous module and the start of the next one;
• Module connection: connectivity between two modules and
corresponding state change connections (one for each task that
passed through that module connection). This is used to collect
statistics over the entire execution.

B. Smart Trace Composition and Exploration

The ST collection is presented in an interactive application
as a list of objects that can be drag-and-dropped into a canvas;
at this point a default visualization technique is applied,
depending on the nature of the object (e.g. execution events
are presented as Gantt charts, dataflow modules are shown as
a directed graph, tasks are organized in scatter plots.)

Each visual object can be inspected, to have its associated
values printed; subsets of objects can be selected (interactively
or by scripting), and duplicated. Any subset of objects can be
used as the input of a new visualization, chosen from a menu.
When objects are selected, their attributes and relationships
are shown in the list of objects. Therefore, it is possible to
navigate from one entity to another, by dropping new objects
into the canvas. Graphical elements can be labeled and colored
to show different values associated with the data object.

This workflow allows the user to filter out areas of interest,
and try out various parameters without necessarily losing the
previous visualization, as long as the user makes duplicates of
the objects being manipulated. The original data objects are
shared, so at any point all visual objects corresponding to a
given data point can be highlighted, linked by arrows, etc.

Coordinated multiple views are implemented by letting
visualizations share parameters and trigger updates as a result
of certain interactions. A long area chart for example can offer
multiple zoom points that can be dragged in the time axis to
let other visualizations display the relevant information.

V. RESULTS

We designed experiments to validate the expressive power
of STs. In this section we detail the implementation, starting
with an enumeration of the goals of the trace analysis, followed
by results obtained for each dataflow construction.

A. Dataflow System

Many of the existing dataflow systems are tightly coupled
with larger specific environments (e.g. VisTrails, SCIRun)
or have too rigid implementations (e.g. VTK, where the
coordination of execution is not centralized into a single
entity.) For that reason we chose to use HyperFlow [5], a
light-weight parallel dataflow system, written in C++, that
supports execution on both CPUs and GPUs. In HyperFlow,
each module is implemented by deriving a base class. Besides
describing input and output ports, the module can also specify
both CPU and GPU implementations (the latter using CUDA).
The scheduler (which runs in its own thread) uses a priority
queue for the execution requests. The priority is based on the

order the corresponding tasks were submitted to the system
(the first task submitted has the highest priority). Whenever
an execution thread is available, the scheduler looks for an
execution request in the execution queue, and assigns it to the
thread. In addition, the system tries to follow the streaming
paradigm where data needs to be pushed downstream as
soon as its ready. This constitutes a best-effort priority-based
scheduling, as the order of completion of the tasks is not
rigidly enforced. The centralized scheduler is the single point
requiring instrumentation to collect the traces of the execution.

B. Trace Analysis Goals

We designed experiments to answer the following questions:
Q1: Identify the most time consuming modules in a dataflow
and inspect its effect in the pipeline performance;
Q2: Identify which input tasks cause certain modules to take
more time to compute;
Q3: Recognize which modules have their execution stalled
due to waiting input from other modules;
Q4: Visually inspect performance aspects of a dataflow run-
ning in a heterogeneous system with CPUs and GPUs;
Q5: Recognise runtime characteristics that are emergent from
various implementation details.

Different dataflow constructions are used to evaluate the
questions above. The first two dataflow constructions were
synthetically generated to simulate abnormal behaviors that
can be spotted upon analysis. Each synthetic dataflow is
specified by its topology, the estimated run time costs of
each module, and the number of tasks to be processed during
execution. The first example consists of a complex pipeline
with a single module bottleneck that runs slower than the re-
maining modules. This construction addresses Q1. The second
example uses an irregular workload, with multiple execution
paths converging to a single join module at different speeds.
In this case, the join module has to wait for all its inputs to be
available. Such construction addresses Q2. Finally, we created
intermittent slowdowns, where multiple inputs are processed,
but only a few make some modules run slower (e.g. an image
processing module that is optimized for power-of-two sized
images). This addresses Q3. To address Q4 we used an image
processing pipeline with modules that can be executed both
on CPU and GPU. Finally, Q5 was addressed by analyzing
inputs with larger degrees of parallelism.

C. Pipeline Results

1) Complex Pipeline: The first dataflow, shown in Figure
3 (left), is called Complex and contains multiple paths with
different runtime costs joining at three points. The module
Join1 runs much slower than the others. It is not only a
bottleneck, but almost always guarantees that the input for
the following module (Join2) arrives late. Figure 3 (right)
shows the result of an execution with 8192 inputs running
with 256 worker threads on a 264-core SMP machine, with
a time-compressed stacked line graph. The time scale was
compressed non-linearly so each event in the graph has unit
length, no matter how short or how long that event lasted.

168

Join1

Module5

Module8

Join2

Module7

Module6

Module4

Module2

Join0

Module3

DataSrc

Module1

Module0

DataSink

Fig. 3. Visualizing the execution of the Complex pipeline (left) with 8192 input tasks running with 256 threads. The time-compressed stacked line graph
(right) represents the concurrency of execution (number of active threads, on the y-axis) over time (x-axis). The lines are ordered and colored by the module
the corresponding thread is executing, forming large areas of the same color instead of alternated colored lines. The compressed stacked line-graph can identify
interesting patterns, such as the brief interruption of execution of the first module DataSrc (blue) to execute modules 0 and 3 (green and orange). Snapshots
of the pipeline states are given below, showing the modules executed at certain timesteps (e.g. the fourth snapshot has modules 5 (yellow) and 6 (gray).

7.52 ms

7.52 ms

0.93 ms

7.52 ms

7.53 ms23.14 ms 7.53 ms 7.52 ms

3.01 ms

7.54 ms 7.54 ms

30.06 ms

90.11 ms

15.04 ms

Fig. 4. Execution of one task in a system composed of 256 CPUs. (top) Gantt chart of thread utilization (bottom) time annotated diagram with time spent to
execute each module for this specific task. Gray arrows show data movement through the pipeline, and the colors show the corresponding execution inside the
Gantt chart. We can see that not only Join0 (light brown) took longer to execute, it was scheduled much later after the termination of Module8 (dark blue).

This shows more clearly short-lived behaviors without risking
other events overlapping the same area of the chart. We can
observe that the scheduler favors a grouping of executions by
module, with a small level of concurrency for most of the
execution. When data is available from the DataSrc module,
execution of Module0 and Module3 starts, with little overlap of

execution of these last two modules and DataSrc. Snapshots of
active states at six timesteps during the execution is displayed
below, coloring only active modules. This suggests that the
synchronization between the scheduler and the worker threads
is comparable to the runtime of each execution, thus the
scheduler is not able to keep the worker threads busy.

169

The same execution is visualized in Figure 4, with a full
Gantt chart on top, and a single dataflow task (corresponding
to the the 1811th input) displayed below. The network below is
composed of the actual state change events for that task, copied
from the Gantt chart visualization, and inter-connected through
the dataflow topology. The duration property of the event
objects was used as the label of each event, and connections
were created between them and the Gantt chart to show where
in time they occur. We verify that module Join1 is taking
much longer to execute, but for this particular input it was
also scheduled to executed much later in time than one would
expect (e.g. after Module8, colored in dark blue).

2) Irregular Pipeline: This second dataflow models a fork
(Figure 5), shown as time annotated diagrams, where the user
selected to display statistics instead of the default labels. In this
case one path has an arbitrarily irregular runtime, which slows
down once every 17 inputs. This characteristic can be hard to
identify by just looking at average run times. This dataflow
was executed with 1024 inputs, with 4 working threads.

The communication between modules corresponds to the
time since the data was available from the output port of a
module until it was consumed by the next module. Delays
in data transfer are shown in Figure 6(a), with the start of
the delay on the x-axis in seconds, and the duration of the
delay in the y-axis, in nanoseconds, with a logarithmic scale;

Src

0 10 20 30

71.5

72.5

73.5

74.5

A

0 10 20 30

14.3

14.5

14.7

14.9

15.1

B

0 10 20 30

14.5

15

15.5

16

16.5

C

0 10 20 30

16

20

24

28

D

0 10 20 30
14.25

14.5

14.75

15

15.25

Sink

0 10 20 30

7.15

7.25

7.35

7.45

7.55

Sink

0 10 20 30

7.15

7.25

7.35

7.45

7.55

Fig. 5. Irregular pipeline: (left) dataflow with a per-module scatter plot of all
executions, comparing the start time (x-axis, in seconds) with duration (y-axis,
in milliseconds). Gray arrows show pipeline connections, while black arrows
connect executions to one specific input. (right) zoom of Src, C and Sink.

(a)

0.41 ms

42.71 ms 49.98 ms

688.95 ms

8.46 ms 0.55 ms

7.15 ms

14.30 ms

14.94 ms14.30 ms

14.30 ms

71.51 ms

(b)

2.61 ms5.91 ms

3456.52 ms

700.77 ms701.07 ms

2.63 ms

0.08 ms

0.04 ms

0.05 ms

0.25 ms

2.57 ms

0.03 ms

(c)

Fig. 6. Run times and delays in the Irregular pipeline: (a) scatter plot of data
transfer delays comparing start time (x-axis, in seconds) and duration (y-axis,
in nanoseconds, natural log scale), with the color map used on its right side,
(b) mean values and (c) standard deviation for run times and transfer delays,
which are annotated inside modules and on edges respectively.

the color map corresponds to the y axis1. We can clearly see
three groups of delays in the plot. The shortest delays (on
the bottom of the chart) are towards the end, most likely due
to the scheduler queue getting smaller as the tasks complete;
another group of delays vary more randomly, but on the same
range, during the whole execution; and a few, but much longer
delays (i.e. on the top), that also seem to decrease in duration
towards the end. In Figure 5 (b) we can see the mean run times
and transfer delays for modules and connections, while Figure
5 (c) shows the standard deviations of the same data. All
values use the same color map as the scatterplot, normalized
between the minimum and maximum values for each quantity,
independently for modules and connections. Just after the data
is produced by the first module (on top), and where the paths
split, we see the data is idle for much longer than the rest
of the connections. The scheduler seems to prioritize the left
path, as data waits longer to go to the right path, and is the
last to be consumed at the junction point (the larger delay on
the left means the module was idle waiting for the right path).
The standard deviation diagram shows the irregular runtime on
the right path, as well as the variability in delays for pushing
the data from the top two modules.

3) Edge Detection Pipeline: processing application that
performs edge detection using the “Difference of Gaussians”
algorithm, on a large image composed of individual tiles
(each tile being an independent input for the pipeline), then
composed into a single image output. The individual oper-
ations (inversion, blurring and difference) are performed in
independent modules. The Invert and Gaussian Blur modules
have two implementations, one for the CPU and another for
the GPU (using CUDA). While many embarrassingly parallel
tasks (such as many image processing operations) tend to
perform better on the massively parallel hardware available on
GPUs, it does not guarantee a performance boost; the overhead
caused by data transfer and synchronization can easily offset
the runtime trimmed from the execution if the implementation

1 e9 ≈= 8.1µs, e12 ≈= 163µs, e15 ≈= 3.3ms, e18 ≈= 66ms, ...

170

Invert

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

Gaussian Blur

0 4 8 12 16 20 24

0

0.25

0.5

0.75

GPU 0 GPU 1 GPU 2

CPU 7CPU 6CPU 5CPU 4CPU 3CPU 2CPU 1CPU 0

Fig. 7. Scatter plot for two modules (Invert and Gaussian Blur) showing
duration of executions (y-axis) over time (x-axis) Lines connect the execution
to the thread where it occurred, either on CPUs or GPUs. Observe that a
single GPU execution in the Gaussian Blur module takes much longer to run.

is not properly tuned. This application received 512 input
images with 3 MPixels each, running with 8 CPU threads and
3 GPU threads. Figure 7 shows an analysis focused on the
events in modules Invert and Gaussian Blur. A scatterplot for
the duration of each execution shows mainly two groups of
executions. The thread objects were added to the visualization
and connected by lines to events they executed. Colors are
mapped to threads related to the object, showing how the
fastest executions were performed by GPU implementations
of those threads. There is one outlier in the Gaussian Blur
module that took considerably more time to complete.

The first 4 seconds of execution are shown in Figure 8.
The top Gantt chart shows one line per thread (first 3 lines
are GPUs, remaining lines are CPUs). The first modules to
execute on the GPU threads (data uploads) take a long time
to execute, due to the CUDA runtime initialization. Soon
after that, the GPU threads stay idle for most of the time,
which is expected as the Decode Image (blue) is too slow in
comparison. Reorganizing the chart by module (middle) we
see an undesired behavior on the Decode Image module: it
stops reading input images from the file system. By focusing
on this module alone, we create another visualization (bottom)
with a stacked line graph, showing one thread per line, and
notice a second undesired behavior: with too many threads
trying to perform I/O at the same time, the performance is
likely to decrease, as I/O buffers (and possibly the physical
media) have to deal with many non-sequential accesses. An
ideal execution for this module would have at a time only a few
threads active and no empty gaps (to minimize concurrent I/O
overhead), and a scheduling policy could provide this behavior.

VI. LIMITATIONS

The design decision of using Python to represent and
manipulate data implies an execution overhead inherent of
the code being interpreted, with little to none optimization.
This performance penalty is purely technological, and can be
amortized if the chosen implementation uses a JIT interpreter.

On the other hand, the dynamic aspect provides a convenient
workflow without requiring the user to process data outside
the environment to extract new information from the initial
dataset. The user interface is still very experimental, and very
tied to programming concepts. For most of the exploration we
feel it should provide enough functionality without requiring
programming skills; on the other hand, it is reasonable to
expect a user analysing this data to be familiar with basic
programming concepts. We also want to be able to generate
animations of trace data from within the platform. Some
visualizations require processing large amount of time-varying
data, which are challenging to produce real-time animations.

VII. CONCLUSION AND FUTURE WORK

In this work we presented different ways to look at parallel
trace data, in particular to parallel dataflow traces. Current
tools for trace analysis are limited to displaying resource
utilization Gantt charts. As we demonstrated along the work,
trace data is rich and full of information that can be seen
in different perspectives. The notion of ST captures the idea
of creating linked visualizations, which can be procedurally
generated or simply generated from pre-recorded templates.
The generality of the approach, enhanced with dataflow in-
formation, allowed us to observe this data in different ways,
illustrate throughout the text with several examples.

In the future we would like to make the tool available to the
public, as well as be able to perform code instrumentation for
existing dataflow platforms, such as VTK. We believe it can
be useful for the VTK user community, where we could test
our system with diverse usage scenarios. This would require
validating our technique with larger dataflow topologies.

ACKNOWLEDGMENT

The authors would like to thank CNPq (processes
476685/2012-5 and 309483/2011-5).

REFERENCES

[1] M. Heath and J. Etheridge, “Visualizing the Performance of Parallel
Programs,” Software, IEEE, vol. 8, no. 5, pp. 29 –39, 1991.

[2] E. Kraemer and J. T. Stasko, “The Visualization of Parallel Systems: an
Overview,” J. Parallel Distrib. Comput., vol. 18, pp. 105–117, 1993.

[3] S. Hackstadt, A. Malony, and B. Mohr, “Scalable Performance Visu-
alization for Data-parallel Programs,” in Scalable High-Performance
Computing Conference, Proceedings of the, 1994, pp. 342 –349.

[4] G. Tomas and C. W. Ueberhuber, Visualization of Scientific Parallel
Programs. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994.

[5] H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, “HyperFlow:
A Heterogeneous Dataflow Architecture,” in Eurographics Symposium
on Parallel Graphics and Visualization, 2012, pp. 1–10.

[6] S. Havre, B. Hetzler, and L. Nowell, “ThemeRiver: visualizing Theme
Changes over Time,” in Information Visualization, IEEE Symposium on,
2000, pp. 115–123.

[7] L. Byron and M. Wattenberg, “Stacked Graphs – Geometry & Aes-
thetics,” IEEE Transactions onVisualization and Computer Graphics,
vol. 14, no. 6, pp. 1245–1252, 2008.

[8] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, pp. 741–748, 2006.

[9] J. Waser, R. Fuchs, H. Ribičič, B. Schindler, G. Blöschl, and E. Gröller,
“World Lines,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1458–1467, 2010.

[10] H. L. Gantt, Work, Wages, and Profits. New York : The Engineering
magazine co., 1913.

171

Th
re
ad

s
M
od

ul
es

De
co

de
 Im

ag
e

Fig. 8. Top and middle: two Gantt charts visualizations of two STs, one parametrized by thread and one by pipeline module; the time interval displayed
is for the first 4 seconds of execution. The orange represents data upload to the GPU, and its first execution in each GPU thread (top three lines of the top
chart) take longer to complete because of the CUDA runtime initialization. The bottom chart is a stacked line chart by module, where each line represents a
thread executing that module, showing the concurrency profile of each module; the time is compressed non-linearly, where each event takes one unit of time.

[11] R. Schiefer and P. van der Stok, “VIPER: a Tool for the Visualisation
of Parallel Programs,” Parallel and Distributed Processing, 1995. Pro-
ceedings. Euromicro Workshop on, pp. 540–546, 1995.

[12] T. Wagner and R. Bergeron, “A Model and a System for Data-parallel
Program Visualization,” Visualization, 1995. IEEE Conference on, pp.
224–231, 1995.

[13] E. Karrels and E. Lusk, “Performance Analysis of MPI Programs,” in
Proceedings of the Workshop on Environments and Tools for Parallel
Scientific Computing, 1994, pp. 195–200.

[14] C. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk,
and W. Gropp, “From Trace Generation to Visualization: A Perfor-
mance Framework for Distributed Parallel Systems,” Supercomputing,
ACM/IEEE 2000 Conference, p. 50, 2000.

[15] C. Wu and A. Bolmarcich, “Gantt Chart Visualization for MPI and
Apache Multi-Dimensional Trace Files,” in ICPADS ’02: Proceedings
of the 9th International Conference on Parallel and Distributed Systems.
IEEE Computer Society, 2002, pp. 523–528.

[16] C. Sigovan, C. Muelder, and K.-L. Ma, “Visualizing Large-scale Parallel
Communication Traces Using a Particle Animation Technique,” Comput.
Graph. Forum, vol. 32, no. 3, pp. 141–150, 2013.

[17] J. Roberts and C. Zilles, “TraceVis: an Execution Trace Visualization
Tool,” in Proceedings of Workshop on Modeling, Benchmarking and
Simulation (MoBS), 2005, pp. 5–12.

[18] A. Knüpfer, H. Brunst, and W. Nagel, “High Performance Event Trace
Visualization,” Parallel, Distributed and Network-Based Processing,
2005. PDP 2005. 13th Euromicro Conference on, pp. 258–263, 2005.

[19] D. Martinez, V. Blanco, M. Boullon, J. Cabaleiro, C. Rodriguez,
and F. Rivera, “Software Tools for Performance Modeling of Parallel
Programs,” in Parallel and Distributed Processing Symposium, IEEE
International, 2007, pp. 1 –8.

[20] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood, “Understanding
and Visualizing Full Systems with Data Flow Tomography,” SIGPLAN
Not., vol. 43, pp. 211–221, 2008.

[21] M. Schnorr, O. Navaux, and B. de Oliveira Stein, “Dimvisual: Data
integration Model for Visualization of Parallel Programs Behavior,”
Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE
International Symposium on, vol. 1, pp. 473–480, 2006.

[22] L. Schnorr, G. Huard, and P. Navaux, “Towards Visualization Scalability
through Time Intervals and Hierarchical Organization of Monitoring
Data,” Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on, pp. 428–435, 2009.

[23] ——, “3D Approach to the Visualization of Parallel Applications and
Grid Monitoring Information,” Grid Computing, 2008 9th IEEE/ACM
International Conference on, pp. 233–241, 2008.

[24] D. Hackenberg, G. Juckeland, and H. Brunst, “High Resolution Pro-

gram Flow Visualization of Hardware Accelerated Hybrid Multi-core
Applications,” IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pp. 786–791, 2010.

[25] J. Trümper, J. Bohnet, and J. Döllner, “Understanding Complex Multi-
threaded Software Systems by using Trace Visualization,” in Proceed-
ings of the 5th international symposium on Software visualization, ser.
SOFTVIS ’10. New York, NY, USA: ACM, 2010, pp. 133–142.

[26] D. Holten, B. Cornelissen, and J. van Wijk, “Trace Visualization using
Hierarchical Edge Bundles and Massive Sequence Views,” Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007. 4th
IEEE International Workshop on, pp. 47–54, 2007.

[27] W. Javed, B. McDonnel, and N. Elmqvist, “Graphical Perception of Mul-
tiple Time Series,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 927–934, 2010.

[28] N. Andrienko and G. Andrienko, Exploratory Analysis of Spatial and
Temporal Data: A Systematic Approach. Springer-Verlag New York,
Inc., 2005.

[29] J. C. Roberts, “State of the art: Coordinated & multiple views in
exploratory visualization,” in Proceedings of the Fifth International Con-
ference on Coordinated and Multiple Views in Exploratory Visualization,
2007, pp. 61–71.

[30] G. Andrienko and N. Andrienko, “Coordinated Multiple Views: a
Critical View,” in Coordinated and Multiple Views in Exploratory
Visualization, 2007. CMV ’07. Fifth International Conference on, 2007,
pp. 72 –74.

[31] A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg, “Compar-
ative Analysis of Multidimensional, Quantitative Data,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1027
–1035, 2010.

[32] A. Forbes, T. Hollerer, and G. Legrady, ““Behaviorism”: a Framework
for Dynamic Data Visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1164–1171, 2010.

[33] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic In-
strumentation of Production Systems,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, 2004, pp. 2–2.

[34] M. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. Nagel, “Developing Scalable Applications with Vampir, Vam-
pirServer and VampirTrace,” Parallel Computing: Architectures, Algo-
rithms and Applications, vol. 15, pp. 637–644, 2007.

[35] S. S. Shende and A. D. Malony, “The Tau Parallel Performance System,”
Int. J. High Perform. Comput. Appl., vol. 20, pp. 287–311, 2006.

172

