
VisTrails: Visualization meets Data Management

Steven P. Callahan Juliana Freire Emanuele Santos
Carlos E. Scheidegger Cláudio T. Silva Huy T. Vo

SCI Institute and School of Computing – University of Utah

1. INTRODUCTION
Scientists are now faced with an incredible volume of data to

analyze. To successfully analyze and validate various hypothesis,
it is necessary to pose several queries, correlate disparate data, and
create insightful visualizations of both the simulated processes and
observed phenomena. Data exploration and visualization requires
scientists to go through several steps. They need to select data sets
and design complex dataflows that apply series of operations to the
data to create appropriate visual representations, before they can fi-
nally view and analyze the results. Often, insight comes from com-
paring the results of multiple visualizations. Unfortunately, today
this process contains many error-prone and time-consuming tasks.
In addition, once a data product, e.g., an image, is generated, all
the scientist is left with is the bitmap; if a detailed caption is not
created, it may not even be possible to reproduce that image at a
later time. As a result, the generation and maintenance of visual-
izations is a major bottleneck in the scientific process, hindering
both the ability to mine and use scientific data.

The VisTrails system [2, 3] represents our initial attempt to stream-
line the visualization process. Our long-term goal is to provide the
necessary infrastructure to improve the scientific discovery process
and reduce the time to insight. In VisTrails, we address the prob-
lem of visualization from a data management perspective: Vis-
Trails manages the data and metadata of visualization products. By
capturing the provenance of both the visualization processes and
data they manipulate, VisTrails enables reproducibility and simpli-
fies the complex problem of creating and maintaining visualiza-
tions. It also allows scientists to efficiently and effectively explore
data through visualization: they can explore their visualizations
by returning to previous versions of a dataflow (or visualization
pipeline); apply a dataflow instance to different data; explore the
parameter space of the dataflow; query the visualization history;
and comparatively visualize different results. Data management
techniques used in many different components of the system are
key to providing these functionalities, which have been absent in
previous visualization systems.
Outline. The rest of this paper is outlined as follows. In Section 2,
we describe an application scenario that motivated us to build Vis-
Trails. We discuss the limitations of existing visualization systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

in Section 3 and describe the architecture of VisTrails in Section 4.
Finally, we provide an overview of our demonstration in Section 5.

2. MOTIVATING EXAMPLE: EOFS
Paradigms for modeling and visualization of complex ecosys-

tems are changing quickly, creating enormous opportunities for
scientists and society. For instance, powerful and integrative mod-
eling and visualization systems are at the core of Environmental
Observation and Forecasting Systems (EOFS), which seek to gen-
erate and deliver quantifiably reliable information about the envi-
ronment at the right time and in the right form to the right users.
As they mature, EOFS are revolutionizing the way scientists share
information about the environment and represent an unprecedented
opportunity to break traditional information barriers between sci-
entists and society at large [1]. However, the shift in modeling
paradigms is placing EOFS modelers in an extremely challeng-
ing position, and at the risk of losing control of the quality of op-
erational simulations. The problem results from the breaking of
traditional modeling cycles: tight production schedules, dictated
by real-time forecasts and multi-decade simulation databases, lead
even today to tens of complex runs being produced on a daily basis,
resulting in thousands to tens of thousands of associated visualiza-
tion products.

As an example, Professor António Baptista, the lead investigator
of the CORIE1 project prepares figures for presentations showing
results of simulations that he has designed, but that are executed
by a research scientist in his group. The component elements of
his figures are generated over a few hours by a sequence of scripts,
activated by a different staff member in Baptista’s group who is
a visualization specialist. Once he receives the images, Baptista
draws the composite figure for a particular run in PowerPoint us-
ing cut-and-paste. This process is repeated for similar and comple-
mentary runs. Because element components are visually optimized
for each run, cross-run synthesis often have scale mismatches that
make interpretation difficult.

The process followed by Baptista is both time consuming and
error prone. Each of these visualizations is produced by custom-
built scripts (or programs) manually constructed and maintained by
several members of Baptista’s staff. For instance, a CORIE visual-
ization is often produced by running a sequence of VTK [5] and
custom visualization scripts over data produced by simulations.
Since there is no infrastructure to manage these scripts (and as-
sociated data), often, finding and running them are tasks that can
only be performed by their creators. This is one of main reasons
Baptista is not able to easily produce the visualizations he needs
in the course of his explorations. Even for their creators, it is hard
to keep track of the correct versions of scripts and data. Since
1http://www.ccalmr.ogi.edu/CORIE

745

Figure 1: VisTrails Architecture.

these visualization products are generated in an ad-hoc manner,
data provenance is not captured in a persistent way. Usually, the
figure caption and legends are all the metadata available for this
composite visualization in the PowerPoint slide.

3. EXISTING VISUALIZATION SYSTEMS
Visualization systems such as VTK [5] and SCIRun [6] allow

the interactive creation and efficient manipulation of complex vi-
sualizations. These systems are based on the notion of dataflows,
where a visualization is produced by assembling visualization pipe-
lines out of modules that are connected in a network. However,
these systems lack basic data management capabilities and as a
result, they have important limitations.

An important limitation of existing visualization tools is that
they do not provide mechanisms for capturing provenance. Manu-
ally created captions and filenames are often the only provenance
information available for an image. They also lack history man-
agement—since a single instance of a dataflow is maintained, any
changes to a dataflow are destructive. In particular, because there
is no separation between the dataflow specification and its param-
eters, as the parameters are modified, the previous values are for-
gotten. This places the burden on the scientist to first construct the
visualization and then to remember what values led to a particular
image. As the dataflow evolves (i.e., operations are added, deleted
or modified) no information is kept about previous versions. An-
other limitation of existing tools is that they do not provide support
for comparative visualization. In particular, they lack the neces-
sary infrastructure for properly supporting exploratory multi-view
visualizations. The process required to create and compare a large
number of visualizations is way too cumbersome. For example, ex-
ecuting the same dataflow with different parameters (e.g., different
input data sets) requires users to manually specify all the parame-
ters using a Graphical User Interface (GUI). Clearly, this mecha-
nism is not scalable for generating more than a few visualizations.
Finally, existing systems lack an optimization infrastructure. In
particular, these systems may perform unnecessary and redundant
computations while executing dataflows.

VisTrails addresses these limitations providing infrastructure to
support the interaction of the scientist with the visualization pro-
cess. Our objective is to give scientists a dramatically improved
and simplified process to analyze and visualize large ensembles of
simulations and observed phenomena.

4. THE VISTRAILS SYSTEM
The high-level architecture of VisTrails is shown in Figure 1. We

only sketch the main features of the system here, for further details
see [2, 3]. Users create and edit dataflows using the Vistrail Builder
user interface. The vistrail specifications are saved in the Vistrail
Repository. Users may also interact with saved vistrails by invok-
ing them through the Vistrail Server (e.g., through a Web-based
interface) or by importing them into the Visualization Spreadsheet.

Figure 2: A snapshot of the VisTrails history management interface.
Each node in the history is a separate dataflow that differs from its
parent by changes to the parameters or modules.

Each cell in the spreadsheet represents a view that corresponds to a
dataflow instance; users can modify the parameters of a dataflow as
well as synchronize parameters across different cells. Dataflow ex-
ecution is controlled by the Vistrail Cache Manager, which keeps
track of operations that are invoked and their respective param-
eters. Only new combinations of operations and parameters are
requested from the Vistrail Player, which executes the operations
by invoking the appropriate functions from the Visualization and
Script APIs. The Player also interacts with the Optimizer module,
which analyzes and optimizes the dataflow specifications. A log
of the dataflow execution is kept in the Vistrail Log. The different
components of the system are described below.
Vistrail Specification. A dataflow is a sequence of operations used
to generate a visualization. A vistrail captures the notion of an
evolving dataflow—it consists of several versions of a dataflow.
The information in a vistrail serves both as a log of the steps fol-
lowed to generate a series of visualizations, a record of the visual-
ization provenance, and as a recipe to automatically re-generate the
visualizations at a later time. The steps can be replayed exactly as
they were first executed, and they can also be used as templates—
they can be parameterized. In order to handle the variability in
the structure of operations, and to easily support the addition of
new operations, we represent vistrails using XML (for more detail,
see [3]). An important benefit of using an open, self-describing,
specification is the ability to query, share, and publish vistrails.
This allows a scientist to locate dataflows suitable for a particular
task or data products generated by a given sequence of operations,
as well as to publish an image along with its associated vistrail so
that others can easily reproduce the results.
History Management. As discussed above, a vistrail captures in-
formation about the evolution of a dataflow or collection of related
dataflows—it behaves as a versioning system for dataflows. A vis-
trail consists of a tree where each node corresponds to a dataflow
(see Figure 2). But instead of storing the dataflows themselves, we
store the operations that take one dataflow to another. An edge be-
tween a parent and child nodes in a vistrail tree represents a set of
change actions applied to the parent to obtain the dataflow for the
child node. The action-based provenance mechanism of VisTrails
is reminiscent of DARCS2. This structure it allows scientists to
easily navigate through the space of dataflows created for a given
exploration task. In particular, they have the ability to return to
previous versions of a dataflow and compare their results. At any
point in time, the scientist can choose to view the entire history
of changes, or only the dataflows important enough to be given a
name (i.e., annotated changes).
Caching, Analysis and Optimization. Having a high-level spec-
ification allows the system to analyze and optimize dataflows. Ex-

2http://abridgegame.org/darcs

746

(a) (b)

Figure 3: The Vistrail Builder (a) and Vistrail Spreadsheet (b) showing the dataflow and visualization products of the CORIE data.

ecuting a vistrail can take a long time, especially if large data sets
and complex visualization operations are used. It is thus important
to be able to analyze the specification and identify optimization op-
portunities. In the current VisTrails prototype, we leverage the vis-
trail specification to identify and avoid redundant operations. The
Vistrail Cache Manager (VCM) is responsible for scheduling the
execution of modules in vistrails by identifying previously com-
puted subnetworks and performing constant-time cache lookups.
Playing a Vistrail. The Vistrail Player (VP) receives as input an
XML file for a dataflow instance and executes it using the underly-
ing Visualization or Script APIs. The semantics of each particular
execution are defined by the underlying API. Currently, the VP
supports VTK classes with a very simple interpreter.
Creating and Interacting with Vistrails. The Vistrail Builder
(VB) provides a graphical user interface for creating and editing
dataflows (see Figure 3(a)). It writes (and also reads) dataflows in
the same XML format as the other components of the system. It
shares the familiar nodes-and-connections paradigm with dataflow
systems. To allow users to compare the results of multiple dataflows,
we built a Visualization Spreadsheet (VS). The VS provides the
user a set of separate visualization windows arranged in a tabu-
lar view. This layout makes efficient use of screen space, and the
row/column groupings can conceptually help the user explore the
visualization parameter space [4]. The cells may execute different
vistrails and they may also use different parameters for the same
vistrail specification (see Figure 3(b)). To ensure efficient execu-
tion, all cells share the same cache. Users can also synchronize
different cells using the VS interface.

5. DEMONSTRATION OVERVIEW
In this demonstration, we show the power and flexibility of Vis-

Trails by presenting actual scenarios in which scientific visualiza-
tion is used and showing how our system improves usability, en-
ables reproducibility, and greatly reduces the time required to cre-
ate scientific visualizations. In particular, we show how dataflows
are created and modified using the Vistrail Builder and Vistrail
Spreadsheet. Our examples also demonstrate the usefulness of the
history management, caching capabilities, and comparative visual-
ization tools in VisTrails.
CORIE. We demonstrate, through specific examples, how Vis-
Trails can be used to improve the current visualization process
that Professor Baptista employs. This part of the demonstration

includes queries to published visualizations and the use of the his-
tory to modify existing visualizations.
Medical Imaging. Acquiring useful information from the results
of medical imaging devices has been a subject of much research
in the field of scientific computing. We show how VisTrails can
be used to explore the parameter space using multi-view visual-
ization and how caching substantially improves the interactivity of
the process.
Uncertainty Visualization. A difficult problem in scientific sim-
ulation is to represent the uncertainty of the modeling systems due
to measured or computed error. We demonstrate how VisTrails
can be used to effectively visualize uncertainty through the use of
evolving dataflows and comparative visualization.

An alpha release of VisTrails (available upon request) is cur-
rently being tested by a select group of domain scientists. More
information about the system is available at

http://www.sci.utah.edu/˜vgc/vistrails

Acknowledgments. António Baptista (Oregon Health & Science
University) and Patricia Crossno (Sandia) have provided us valu-
able input for the system design. This work is partially supported
by the National Science Foundation, the Department of Energy,
Army Research Office, and IBM.

6. REFERENCES
[1] A. Baptista. Encyclopedia of Physical Science and Technology,

chapter Environmental Observation and Forecasting Systems.
Academic Press, 2002.

[2] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva,
and H. Vo. Vistrails: Enabling interactive multiple-view
visualizations. In IEEE Visualization 2005, pages 135–142, 2005.

[3] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Managing the evolution of dataflows with vistrails. In IEEE Workshop
on Workflow and Data Flow for Scientific Applications (SciFlow
2006), 2006. To appear.

[4] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach
to information visualization. In IEEE Information Visualization
Symposium, pages 17–24, 1997.

[5] Kitware. The Visualization Toolkit (VTK) and Paraview.
http://www.kitware.com.

[6] S. G. Parker and C. R. Johnson. SCIRun: a scientific programming
environment for computational steering. In Supercomputing, 1995.

747

