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Abstract. We present a simple and efficient algorithm to compute cache-friendly

layouts of unstructured geometric data. Coherent mesh layouts minimize cache

misses and page faults by laying out vertices, triangles or tetrahedra in a spatially

structured manner. Recently, Yoon et al. have shown that it is possible to construct

an optimal cache-oblivious mesh layout (COML) for surface and volume data. How-

ever, their approach is based on an NP-Hard optimization problem, and is thus very

computationally expensive. We present a mesh layout based on space-filling curves

that has comparable performance to COML and is orders of magnitude faster to com-

pute. We also discuss extending our algorithm to handle extremely large datasets

through an out-of-core approach. Finally, we include an analysis that examines

a number of different mesh layouts, highlighting their strengths and weaknesses.

Our evaluation indicates that space-filling curve layouts can be an order of magni-

tude faster and less memory-intensive to compute while, in every application, being

able to maintain a performance within 5% of the best layout, including those that

are specifically tuned for GPU hardware vertex caches in [Lin and Yu 06, Sander

et al. 07].
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1. Introduction

In the past few years, advances in 3D data acquisition technology, as well as
improvements in simulation algorithms, have made very large datasets avail-
able to the computer graphics community. Currently, the size of these models
can vary from a few tens of thousands to hundreds of millions of polygons.
Many challenges arise from this notable increase in size and complexity, and
recently much attention has been given to the problem of computing high
quality memory layouts for geometric datasets. Such layouts aim to mini-
mize the cache miss and page fault penalty incurred by applications. This
can be done by defining a cache coherence metric and then optimizing the
layout according to this metric. Yoon et al. [Yoon and Lindstrom 06, Yoon
et al. 05] have investigated this problem and proposed a cache-oblivious mesh
layout (COML) that generates near optimal results for any cache configu-
ration. One of this work’s major findings is that by optimizing a dataset’s
layout in memory, it is possible to improve the performance of many mesh
processing applications without modifying the applications themselves. Our
technique is similar to COML in the sense that it can also naturally improve
the performance of other applications, but it is based on a space-filling curve
approach, and is thus much faster to compute.

Space filling curves are well known for their memory coherence character-
istics and high spatial locality [Sagan 94]. They are widely used in appli-
cations such as terrain [Lindstrom and Pascucci 01] and volume [Pascucci
and Frank 01] rendering. However, these curves have not been investigated
in the unstructured grid domain, mostly because they do not consider mesh
connectivity, and are thus not expected to work well with irregular geometry.
Despite this, we have found that since many large models originate from either
a 3D scanner or a simulation, their primitives are typically distributed in a
quasi-regular fashion. Moreover, if we consider each connected component of
a CAD model separately, we can also find a high degree of regularity. Because
of this, our technique generates good results even without considering mesh
connectivity.

2. Background

The most widely used mesh representation is the face-vertex format where
each mesh is represented by two separate arrays: a vertex array V holding
vertex geometries ((x, y, z) locations) and a primitive array I holding indices
into the vertex array to define mesh faces. Vertices can be shared among
faces by specifying the same index in I. In a triangle mesh, for instance,
consecutive values in I are taken three at a time (four at a time in the case
of a tetrahedral mesh) to indicate the three vertices of every triangle. Let |V |
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Figure 1. Different iterations of the discrete Morton curve. (a) and (b) denote
its traversal order embedded in 2D while (c) illustrates how the curve applies in
3D. Observe how the ordering can be implicitly computed by sorting nodes using a
specific labeling in base-4 and base-8 digits (for 2D and 3D space, respectively).

and |T | denote the number of vertices and triangles of triangle mesh with, V
and I will contain 3|V | floats and 3|T | integers, respectively.

Mesh Layouts A mesh layout is a linear ordering of the elements (vertices,
triangles or tetrahedra) in the dataset. There are many ways in which these
layouts can be computed. Breadth-first (BFS) and depth-first (DFS) traver-
sals are two basic examples of algorithms that can generate layouts. Another
approach is spectral sequencing, proposed by Isenburg et. al. [Isenburg and
Lindstrom 05], which heuristically finds the first non-trivial eigenvector of
the mesh’s Laplacian matrix and sorts mesh vertices according to this vector.
This layout is most used for minimizing memory consumption in applica-
tions where mesh streaming is supported. The work of Yoon et. al. [Yoon
and Lindstrom 06, Yoon et al. 05] presents cache-friendly layouts that im-
prove the performance of applications such as view-dependent rendering and
isovalue extraction. Unfortunately, their algorithm is based on an NP-Hard
optimization problem that is very computationally expensive. Even using a
multilevel simplification heuristic, computation times for large datasets can
be prohibitive. Both Isenburg et al. and Yoon et al. share the key idea of
reordering the vertices in V such that nearby indices in I are likely to point
to nearby vertices in V . These layouts tend to reduce the number of cache
misses when reading a mesh, and are therefore called cache-friendly layouts.
An example of a “cache-unfriendly” layout is a random permutation of the
vertex array. Obviously, this causes most adjacent indices to point to distant
locations in the vertex array, greatly increasing the number of cache misses.
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Space-Filling Curves Space filling curves [Sagan 94] are maps from a 1D
interval to a region in n-dimensional space. Intuitively, they can be thought
of as curves that traverse all points of the n-dimensional space, thus inducing
an order on those points. This ordering has many desirable locality prop-
erties [Gotsman and Lindenbaum 94] that make it ideal for cache-friendly
layouts. Many algorithms use space-filling curves to compute efficient layouts
of two- or three-dimensional regular grids. These layouts increase the per-
formance of image processing [Velho and Gomes 91] and terrain and volume
rendering [Lindstrom and Pascucci 01, Pascucci and Frank 01] applications.

Our technique is based on using space filling curves to generate a cache-
friendly mesh layout. We present an efficient algorithm to generate this layout
that can be easily extended to work in out-of-core mode, thus allowing our
technique to deal with extremely large datasets (the largest model with which
we tested our system is the Atlas, which has approximately 500 million trian-
gles). Our solution is based on interpreting vertex indices as node locations
in a high-resolution regular Octree. These nodes can be sorted to construct
an implicit traversal of this tree that corresponds exactly to the underlying
curve.

3. Morton Space-Filling Curve Layout

While our technique can work with any space filling curve, we choose to use
the 3-dimensional Morton order (also known as Z-Order or Bit-Interleaving
curve [Hungershöfer and Wierum 02]) by default for both simplicity and effi-
ciency in layout computation. Moreover, as we show in section 4, our results
are comparable to other, more expensive, layout schemes including Hilbert
curves, which are known to have better locality-preserving behavior. Our im-
plementation can also be easily extended to work with large datasets using
an out-of-core approach.

3.1. Indexing algorithm

Our layout algorithm works by assigning to each vertex a position in the
Morton order traversal, and then sorting mesh primitives according to this
value. Below we summarize the important steps in our technique:

1. Assign an index to each vertex based on its position in the Morton order
traversal

2. Sort the primitives based on their vertices’ Morton indices

3. Reorder the vertices based on the sorted primitives
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Vertex indices We assign a 64-bit unsigned integer index to each vertex
on the mesh. When vertices are sorted according to this index, they automat-
ically assume the layout of a Morton space-filling curve. In order to compute
an index that has this property, we construct an implicit complete Octree of
depth N . The root of the tree is the mesh’s bounding box, and the leaf nodes
are cells in a 2N × 2N × 2N regular grid. The index of a vertex is constructed
by concatenating N octal digits that represent the octants where the vertex is
located in each of the N levels in the Octree (see figure 1 for details). By la-
belling octants in a specific way, we can ensure that this ordering corresponds
to a Morton order curve. Since we only need the dimensions of the bounding
boxes of each octant to run this algorithm, no additional data structure is
necessary.

In principle, N must be large enough to ensure that each leaf in the Octree
is occupied by at most one vertex. Since each octal digit requires exactly three
bits, using 64-bit unsigned integers for indices corresponds to choosing N =
b64/3c = 21. This is equivalent to a grid with resolution higher than (2×106)3,
and accounts for even the largest meshes in our evaluation. Algorithm 1
summarizes the Morton order indexing scheme.

Primitive sorting Once all vertices have an index for their position in the
Morton order, we sort the primitives of the mesh. These primitives can be tri-
angles for surface data or tetrahedra for volumetric meshes. For each primitive
Pi we assign a key Ki, used for sorting. This key is simply the smallest Mor-
ton order index among all vertices incident on Pi. It is important to observe
that this operation is the only sorting required by our entire algorithm.

Vertex Layout Finally, after the primitives are arranged in their definitive
configuration, we rearrange the vertex array. To do this, we traverse the
sorted primitive array and reorder the vertices based on their appearance in
the sorted primitives. We have chosen to sort the primitives instead of vertices
because if we were to sort the vertices and then lay primitives out according
to this order, we would need two sorting operations. In our case, we only need
one sorting, plus a single pass over the primitive array.

3.2. Out-of-core Implementation

Our technique requires very little additional memory and no complex data
structures. Moreover, the algorithm has a very simple control flow: we per-
form a single pass over the vertex array, a sorting operation over the primitives,
and another pass over the vertices. Because of this simplicity, it is very easy
to extend our algorithm to work with very large datasets using an out-of-core
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Function:
Morton order(float3 vertex, BoundingBox bbox, uint64 N)
index← 0;
for 0 <= i < N do

index← index << 3;
// Set the octant using Morton order
if vertex.x > bbox.center.x then

index← index + 1
end
if vertex.y > bbox.center.y then

index← index + 2
end
if vertex.z > bbox.center.z then

index← index + 4
end
// Update the bounding box to the appropriate octant
for d ∈ {x, y, z} do

if vertex. d > bbox.center. d then
bbox.min. d← bbox.center. d

else
bbox.max. d← bbox.center. d

end
end

end
return index

approach.
Below, we summarize the main aspects that need to be modified in order

for this out-of-core implementation to work:

1. The only added memory requirement of our algorithm is an array that
contains the computed Morton order indices and another array with
primitive indices. The Morton order array consists of |V | 64-bit unsigned
integers, namely, 8|V | bytes. However, since we only do a single pass
over the vertices, this array does not need to be kept in-core. It can be
written sequentially to non-volatile storage.

2. If the Morton order index array does not fit in main memory, we can
construct the primitive index array by performing M

8|V | passes over the
primitive data, where M is the total amount of available memory, in
bytes.
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Figure 2. Edge span distribution for different layouts of the Happy Buddha dataset.
The colormap is based on the highest span incident on each vertex, and the values are
normalized by |V |. In other words, the color on a vertex represents the highest span
of its incident edges. Notice how some layout schemes induce particular artifacts
on the ordering of the primitives. The cache oblivious layout separates a mesh into
locally coherent clusters, while ours (Z-Ordering) breaks it into box-like bricks.

3. The required sorting step can be replaced by any of a number of existing
out-of-core sorting solutions.

4. For the last step of the algorithm, we need a bit array of |V | bits that
flags vertices which have already been placed in their final position. This
bit array has to be kept in-core. Therefore, we need at least |V |

8 bytes
of main memory. This is a reasonable assumption, however, since for a
mesh with a billion vertices, this is equivalent to only 128MB of main
memory.

4. Examples and Comparison

There are several ways of evaluating the quality of a given layout. Below, we
present the performance of several applications that we have used with our
layouts and other alternatives. Moreover, we have also used edge spans as
a measure of layout quality. The edge span measures the integer separation
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of two vertices that form an edge. Thus, given e = (v0, v1), the span of e
equals the distance between v0 and v1 in V . We have observed the edge span
distribution of different layouts, and present them in Figure 2.

We have conducted several experimental observations of the performance
of the Morton order layout against other popular layouts. We compare our
technique with BFS and DFS traversal, cache oblivious layouts, and spectral
ordering, as well as the original layout of each dataset. We report the average
speedup against the original layout. We ran tests using both surface and
volumetric data, running various applications such as simplification, rendering
and isovalue extraction. We also report computation costs for the layouts. All
of the tests were performed on an 8-Core Intel Xeon W5580 3.2GHz, 24G̃B
RAM with an NVIDIA GTX 480.

In the case of triangular mesh rendering, we also include additional com-
parisons to layouts that are optimized specifically for GPU vertex cache, in
particular, the work of [Lin and Yu 06] and [Sander et al. 07]. Both tech-
niques were based on the optimization proposed by Hoppe [Hoppe 99] which
has been transferred to Microsoft DirectX as in ID3DX10Mesh::Optimize().
However, our initial tests revealed that ID3DX10Mesh objects in DirectX can
only accommodate meshes with the maximum size of 65534 faces. This pre-
vented us from further evaluating this method, even with our smallest test-
ing model (the Bunny model has 69451 triangles). Given a combination of
DirectX discontinued support for D3DXMesh (there is no ID3DX11Mesh in Di-
rectX 11) and the hindsight from the author stating that newer techniques
from Lin and Yu and Sander et. al should yield better performance, we
believe that it should be sufficient for readers to gain insights from only eval-
uations of these two techniques. Thus, we will not compare our layout with
ID3DX10Mesh::Optimize() in this article.

4.1. Layout Computation

Tables 1 and 2 list the computation time and resources needed to build differ-
ent layouts for surface and volumetric meshes. We were not able to reproduce
the COML computation for models larger than the Asian Dragon. Instead,
we obtained those meshes directly from the authors of COML [Yoon et al. 05].
For the technique of Lin and Yu, we used the binary that is available directly
on the author’s website. Unfortunately, the largest mesh that the program
can handle is the Buddha model, which is the smallest one in our evaluation.
For the method from Sander et al., we were able to obtain the source code
from the author, and were thus able to compute layouts on large meshes. As
shown by our experiments, our Morton order method is much faster to com-
pute and requires less memory than competing alternatives. For extremely
large meshes such as the St. Matthew and Atlas, no method could be ap-
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Dataset Stats B/DFS COML Lin’s Sander’s Ours
Buddha Time 0.9 s 62 s 71 s 0.5 s 0.4 s
1M triangles Mem 43 MB 600 MB 350 MB 131 MB 31 MB
Asian Dragon Time 10 s 494 s - 5 s 3 s
7M triangles Mem 281 MB 5.9 GB - 866 MB 199 MB
Thai Statue Time 14 s - - 7 s 4 s
10M triangles Mem 384 MB - - 1.2 GB 275 MB
Lucy Time 55 s - - 20 s 14 s
28M triangles Mem 1.1 GB - - 3.4 GB 771 MB
David1mm Time 202 s - - 40 s 29 s
56M triangles Mem 2.2 GB - - 6.7 GB 1.5 GB
St. Matthew Time - - - - 239 s
372M triangles Mem - - - 45 GB* 12.7 GB
Atlas Time - - - - 316 s
507M triangles Mem - - - 61 GB* 17.3 GB
Out-of-core (limiting the memory usage to 3 GB)

St. Matthew Time - - - - 504 s
Atlas Time - - - - 701 s

Table 1. Layout computation times for triangular meshes. Notice that the Morton
order can efficiently process extremely large datasets in both in-core and out-of-core
fashion, while alternatives fail above a certain dataset size (*the theoretical amounts
of memory required by Sander et al.’s technique).

plied directly, using 24G̃B of RAM. In those cases, we also report results for
our out-of-core Morton order implementation while limiting main memory
to 3G̃B, a representative amount of memory available on current commodity
PCs.

4.2. Effects of Mesh Layouts on Applications

In order to demonstrate the quality of the Morton order layout, we have mea-
sured the performance of different applications against our technique, as well
as COML and other popular layouts. These applications include interactive
rendering, mesh simplification and isovalue extraction.

Rendering We tested interactive frame rates for both surface and volu-
metric data. For triangle meshes, we used OpenGL with three different ren-
dering methods: Triangle Strips, Vertex Arrays, and Vertex Buffer Objects
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Dataset Tets BFS/DFS COML Ours
Time Mem Time Mem Time Mem

Blunt Fin 187 K 0.4 s 9 MB 8 s 115 MB 0.05 s 5 MB
Heart 359 K 1.3 s 29 MB 16 s 173 MB 0.1 s 13 MB
Torso 1 MB 6 s 96 MB 45 s 550 MB 0.3 s 36 MB
Fighter 1.4 MB 7 s 91 MB 77 s 713 MB 0.5 s 47 MB
Rbl 3 MB 14 s 281 MB 165 s 2.0 GB 1.2 s 128 MB
Mito 5 MB 20 s 320 MB 374 s 2.6 GB 1.7 s 183 MB

Table 2. Layout computation times for volumetric meshes. Our proposed Morton
order layout can compute layouts an order of magnitude faster while consuming
significantly less resources.

(VBOs). Since the largest model that we were able to use with Lin and Yu’s
method is the Happy Buddha, we limited our model size to the Buddha. Fig-
ure 3 presents the results of different layouts. For triangle strips, we used
trimesh2 [Rusinkiewicz ] for triangle stripping and rendering. Since both [Lin
and Yu 06]’s and [Sander et al. 07]’s techniques are optimized specifically
for GPU memory with indexed triangle lists, their layouts have worse per-
formance when rendering triangle strips. On the other hand, they excel in
performance when using VBOs, as in this case objects are mapped directly
onto GPU memory. Observe that in all cases, space-filling curve layouts are
within 5% in performance of the best layout.

We used Hardware-Assisted Visibility Sorting (HAVS) [Callahan et al. 05],
an unstructured grid volume renderer, to test the performance of tetrahedral
mesh layouts. As illustrated in figure 3, the performance gains for volume
rendering are less significant. This is expected, since HAVS does not rely
on mesh connectivity. Nevertheless, the Morton order layout is consistently
among the two best performing methods in our tests.

Simplification Mesh simplification is also a popular processing task against
which we tested our layout. We used two different implementations of quadric-
based [Garland and Heckbert 97] decimation for surface data: QSlim and
the Visualization Toolkit(VTK)’s [Kitware ] vtkQuadricDecimation method.
For volumetric meshes, we used Vo et. al’s Streaming Tetrahedra Simplifica-
tion [Vo et al. 07]. We report the average speedup to simplify meshes down
to 10% of their original resolution. Due to implementation constraints of the
simplification methods, the largest meshes we tested were the Lucy (28 mil-
lion triangles) and Mito (5 million tetrahedra). Figure 4 summarizes these
results. In general, the performance gains are marginal. This is due to the
fact that quadric-based techniques usually access the mesh in a highly non-
structured order. However, the Morton order layout is, again, one of the top
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Figure 3. Average frame rates for OpenGL surface rendering and volumetric ren-
dering using HAVS. For triangle meshes, we report the average frame rates using
the Happy Buddha, Asian Dragon and Lucy datasets. For volume rendering, we use
the Fighter and all smaller datasets.

two alternatives.

Isovalue Extraction As with simplification, we report the average speedup
achieved while extracting isovalues from both surfaces and volumetric datasets.
We extracted 100 isovalues using VTK’s Marching Cubes [Lorensen and Cline 87]
implementation. We embed a simple Euclidean-distance scalar field in meshes
that don’t already contain scalar data. Figure 5 again shows that Morton or-
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Figure 4. Average simplification time of QSlim, VTK (for surfaces) and tetsimp2
(for tetrahedral meshes).

der is among the best layouts, though by a slim margin. In this particular
test, the DFS also has a comparable quality to both COML and Morton order.

5. Discussion

Our algorithm has many significant advantages over competing alternatives.
As we have shown in section 4, its performance is comparable to other, more
complex algorithms, such as COML or GPU vertex-cache optimization tech-
niques. Moreover, our Morton order layout is extremely easy to compute.
Formally, our algorithm runs in either O(|V | + |T | log(|T |)) or O(|T | + |T |)
time, depending on the sorting technique. For our in-core implementation,
we use a linear radix sort while our out-of-core implementation relies on a
comparison-based external sort. However, we do not provide any bounds on
the performance of our Morton order technique. Although extensive tests em-
pirically demonstrate the quality of our layout, we have no theoretical demon-
stration of its performance. In particular, datasets that have highly irregular
geometry distribution may not be improved as much by our technique. For
such datasets, a connectivity-based approach, such as DFS, may yield better
results. Alternatively, one can always decompose meshes into sections with
regular geometric distributions, and construct spatial layouts individually.

Although we have used the Morton order as a basis for mesh layouts, this
is not an inherent limitation of our algorithm. We have defined a particu-
lar mapping between octal digits and octants in an Octree, to make them
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Figure 5. Average isovalue extraction time using VTK’s vtkContourFilter

method. Lucy and Mito were the largest meshes used for this test.

correspond to a Morton order. However, any such mapping induces a valid
space-filling curve that translates to a mesh layout. In particular, it is easy to
obtain a Hilbert curve by reordering the octants. Moreover, other implicit tree
structures, such as a Kd-tree, might also be used to generate coherent layouts.
A possible avenue for further research is to try and determine whether there
exist particularly good spatial tree structures that fit the layout problem. Al-
though this is an interesting question, we have not pursued its solution at this
time.
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