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Figure 1: The topology-based catalogue framework identifies building designs that have good performance with respect to outward views. In
their conceptual design phase, architects use the catalogue to identify a few high performing designs, which are then further refined to satisfy
client objectives and government regulations into a final building design.

Abstract

There is a growing expectation for high performance design in ar-
chitecture which negotiates between the requirements of the client
and the physical constraints of a building site. Clients for build-
ing projects often challenge architects to maximize view quality
since it can significantly increase real estate value. To pursue this
challenge, architects typically move through several design revision
cycles to identify a set of design options which satisfy these view
quality expectations in coordination with other goals of the project.
However, reviewing a large quantity of design options within the
practical time constraints is challenging due to the limitations of
existing tools for view performance evaluation. These challenges
include flexibility in the definition of view quality and the ability
to handle the expensive computation involved in assessing both the
view quality and the exploration of a large number of possible de-
sign options. To address these challenges, we propose a catalogue-
based framework that enables the interactive exploration of concep-
tual building design options based on adjustable view preferences.
We achieve this by integrating a flexible mechanism to combine
different view measures with an indexing scheme for view compu-

tation that achieves high performance and precision. Furthermore,
the combined view measures are then used to model the building
design space as a high dimensional scalar function. The topological
features of this function are then used as candidate building designs.
Finally, we propose an interactive design catalogue for the explo-
ration of potential building designs based on the given view prefer-
ences. We demonstrate the effectiveness of our approach through
two use case scenarios to assess view potential and explore concep-
tual building designs on sites with high development likelihood in
Manhattan, New York City.
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1 Introduction

There is a growing necessity for high performance tower design
in architecture which negotiates between the requirements of the
client and the physical constraints of a building site. In dense,
geographically constrained cities like New York City (NYC) and
Hong Kong, towers are an important building type for two primary
reasons. First, the average size of developable sites has shrunk as
easy to develop, larger sites are developed first. And, second, these
cities are zoned for high densities, making towers the only option
for maximizing all allowable building area. Architects are inter-
ested in exploring and identifying building design variations from
a design parameter space that satisfy their needs at an early stage
in their design process. This helps them mitigate the cost and im-
pact of backtracking within the process that is caused due to sub-
optimal choices [Kimpian et al. 2009]. These choices are typically



made based on multiple performance measures. Fast revision cy-
cles during this stage can help maximize the coverage of the set of
design choices or design space, while balancing the trade-off be-
tween physical constraints and performance measures.

One such performance measure is the quality of outward views (or
views) from the dwelling units of a building. Desirable views are
known to have value in the real estate market as they can signifi-
cantly impact sale and rental prices [Benson et al. 1998]. However,
in spite of their importance, considering view quality in building
design is challenging current architectural workflows. This is es-
pecially true in dense urban environments where views are increas-
ingly limited by the surrounding context and challenging to detect.
In fact, there is little consensus on how to objectively measure views
since rating their quality is inherently subject to viewer preference
and contextually specific conditions [Tsigkari et al. 2013]. There-
fore, many possible view quality measures should be considered
during the design process.

Measuring view quality not only involves the integration of differ-
ent datasets but is also expensive to compute. The typical process
in the architect’s workflow involves the use of a suite of off-the-
shelf software, such as McNeel Rhinoceros or Autodesk Revit, that
does not effectively support the study of a design parameter space
or the associated views. These tools are limited in both their com-
putational power and their capability to help users explore a high
quantity of possible design choices [Tsigkari et al. 2013]. The ad-
dition of practical limitations such as project deadlines forces the
computation of view quality to be simplified to coarser non-realistic
versions and also limits the number of such computations. In fact,
in practice, only a handful of designs are typically considered at any
given point in the conceptual design phase.

The goal of this work is to better equip architects in their early de-
sign phases to make more informed decisions. Any such useful
system should be able to realistically evaluate the view measures
for a large quantity (potentially millions) of possible building de-
signs. It should also be able to identify “good” designs that, in
addition to having good performance, also cover distant regions of
the parameter space, thus providing geometrically distinct options
to the architects. An equally important goal is to have an effective
interface that helps in exploring and comparing the potentially large
number of design variations.

1.1 Contributions

In this paper, we present a catalogue-based framework that was de-
signed in collaboration with architects. The framework allows ar-
chitects to interactively explore conceptual building design options
based on their view preferences. In particular, our contributions are
as follows:

1. We define four different view analysis types, each representing
a different aspect of the view. Users can weight the importance
of each view type based on specific preferences.

2. To enable fast evaluation of views for different design variations
we create a simple yet accurate indexing scheme using the view
scores from a subset of the view space. Computing the view
scores at a given location along a specified direction is trans-
formed into a quick look up, taking O(1) time. We also show
experimental results demonstrating the accuracy of the proposed
indexing technique.

3. An efficient topology-based technique to identify distinct high
performing building designs from the design parameter space.

4. A novel visual interface that allows the interactive exploration

Figure 2: Framework Overview.

and evaluation of varying building designs across different cate-
gories.

We show the effectiveness of our framework through two use case
scenarios set in Manhattan, New York City. The first case study em-
ploys our framework to compare the potential views available be-
tween two building sites: one in the Financial District and the other
in Midtown. This will demonstrate how site specific view types can
be identified and prioritized as part of an architectural pre-design
phase. These obtained insights are then used in the second case
study to inform the schematic architectural design of a hypothetical
mixed use tower on the Financial District site.

Note that this work uses 3D context models which closely represent
the existing physical conditions of the built environment so that any
generated results can be integrated into the design process of actual
building projects.

1.2 Framework Overview

Our framework, illustrated in Figure 2, is primarily divided into
three components – view computation and evaluation; building de-
sign generation; and a catalogue interface.

The first component, described in Section 3, handles the task of
computing views and creating an indexing scheme that supports the
efficient evaluation of views.

The building generation component, described in Section 4, uses
techniques from computational topology to produce high perform-
ing design variations for a given design category. Here, the building
designs are classified into a set of categories based on their geomet-
ric properties.

The final component, described in Section 5, consists of a catalogue
interface that makes use of multiple linked visualization widgets.
This interface allows users to interactively explore optimally per-
forming design variations based on their view scoring preferences.
The catalogue visual interface supports the following features:

• Interactively change both the design categories, as well as view
preferences to generate the required design variations.

• A shopping cart based interface to allow users to compare de-
signs across multiple categories and view preferences.

• A parallel coordinate based filtering interface to help users filter
design variations.

• Ability to explore properties of a given building design, such as
view scores distribution and efficiency of building design over
the different parts of the building.

• Ability to explicitly verify the views from different parts of the
building, and explore the view extent over the city.



(a) Unobstructed View (b) Landmark Building View (c) Landscape View (d) Building Variation View

Figure 3: Illustration of the different view types that are used to evaluate the views from a building.

2 Related Work

Performance driven design has received a lot of attention recently
in the field of architecture. It consists of applying a different set of
(usually conflicting) metrics, such as daylight and solar gain [Chro-
nis et al. 2012], to evaluate and select the best architectural designs
for a given project [Zheng et al. 2014]. A recent trend is the con-
sideration of these criteria in early stages of design [Kimpian et al.
2009; Keough and Benjamin 2010] to help better inform important
design decisions and avoid expensive backtracking further along the
design process.

Orthogonal to our work, there has been a lot of research on proce-
dural modeling for architecture [Wonka et al. 2003; Müller et al.
2006; Wonka et al. 2011; Demir et al. 2014; Schwarz and Müller
2015] in which the goal was to ease the generation of varied build-
ing designs without any particular focus on performance metrics.
In addition to views, important relationships driving the procedural
modeling of towers include building core, zoning regulations and
building use. While these relationships can be geometrically mod-
eled [Gane and Haymaker 2007], we use rules of thumbs provided
by the architects suitable for early design exploration.

Multi-objective optimization techniques have been used as a way
to explore parametric design spaces, but it has only recently
been adopted in the architecture community as a way to guide
initial phases of design [Keough and Benjamin 2010]. Vane-
gas et al. [2012] used a Monte Carlo Markov Chain (MCMC) based
approach to identify procedural models to create urban environ-
ments based on user preferences. The selection of multiple designs
is achieved by running a number of Markov Chains from different
initial positions and collecting the best designs found. A generaliza-
tion of MCMC, called reversible jump MCMC, is also commonly
used used in procedural modeling [Ripperda and Brenner 2006; Tal-
ton et al. 2011]. Genetic algorithms have also been used for the
optimization process during building design [Caldas and Norford
2002; Chronis et al. 2012].

Visualization techniques are commonly used in the general con-
text of exploring complex high dimensional parameter spaces.
Berger et al. [2011] coupled the parameter space with multiple ob-
jective functions based on multidimensional projection and predic-
tive analysis. Visual interfaces have also been proposed specific
to applications domains, for example to browse through parameter
spaces representing shape collections [Averkiou et al. 2014; Talton
et al. 2009; Kleiman et al. 2013]. Different from these techniques,
the approach used in our work couples visualization and computa-
tional topology techniques which enable efficient detection and in-
teractive exploration of interesting building designs based on mul-
tiple view criteria.

Topology-based techniques have been frequently used in mesh
analyses and processing including topology-based shape match-
ing [Hilaga et al. 2001; Dey et al. 2010], topological simplifica-
tion and cleaning [Chiang and Lu 2003; Wood et al. 2004; Pascucci
et al. 2007], surface segmentation and parametrization [Zhang et al.

2005; Dey et al. 2013]. They are also common in the field of sci-
entific visualization (see e.g. [Weber et al. 2007a; Zhou and Takat-
suka 2009; Pascucci et al. 2010]). More recently, topology-based
methods have also been used to explore and analyze high dimen-
sional data [Weber et al. 2007b; Harvey and Wang 2010; Gerber
et al. 2010; Oesterling et al. 2011]. By providing a succinct repre-
sentation of the data (or functions), these techniques help not only
in the visualization of the data, but also in their efficient process-
ing. We decided to adapt topology-based techniques for the prob-
lem at hand due to two main reasons – (i) the set of high perform-
ing buildings are naturally represented as the set of maxima in a
high-dimensional space; and (ii) these topological features can be
computed efficiently.

3 View Analysis Framework

As mentioned in Section 1, the quality of views is a critical compo-
nent in the design of a building especially in a dense urban environ-
ment. In order to effectively measure view quality, we first identify
four different perspectives, or view types (Section 3.1) that capture
different qualitative aspects of the view from a given location and
look at direction. We then use a rasterization approach to compute
the view metrics (associated with each view type) from the visible
scene (Section 3.2). This allows calibration and adjustment of the
view analysis through subjective evaluation of actual views. As de-
scribed later, these metrics can be combined to derive view scores
that capture multiple qualitative view preferences. Finally, to sup-
port the efficient computation of view metrics for a large number of
location-direction pairs, we propose a simple yet effective indexing
scheme (Section 3.3).

3.1 View Types

We have identified the following four view types for our analysis:

Unobstructed View captures the notion of how far a viewer can
see from a given location and is illustrated in Figure 3(a). The view
metric associated with this view type is the average distance from a
viewpoint to obstructions within a human field of view.

Landmark View quantifies how much of select landmarks are vis-
ible. For example, the highlighted floor level of the building icon in
Figure 3(b) is able to view the top portion of the Statue of Liberty.

Landscape View similar to Landmark View, quantifies how much
of certain landscape elements are visible. This is illustrated in Fig-
ure 3(c). Since preference for landscape type can vary based on
location, such as open space or water bodies, the Landscape View
has been optionally subdivided into these two view subcategories.

Building Variation View quantifies the amount of variation in aes-
thetic building character within a view. The intuition here is the
following: achieving a broad diversity of buildings in a single view
is more visually interesting, and potentially more desirable (as illus-
trated in Figure 3(d)). In order to define such variations, buildings



are grouped into five age categories based on their year of con-
struction. This is done since buildings constructed within the same
time periods were typically constructed in a common architectural
language with similar materials and massing forms. The associated
metric is then defined as the entropy of the quantity of building ages
that is present in that view. The more varied the age of buildings in
a single view, the higher its value.

We would like to note that, contrary to what is normally expected,
not all of above defined views are positively impacted by height.
While height certainly improves unobstructed view, it can decrease
the quality of other view types. In fact, both landmark and diversity
views can be negatively impacted by height. Consider, for example,
landmark views. Since views from very high floors literally provide
a bird’s eye view, it is difficult to differentiate between buildings
thus reducing the significance of smaller landmarks (which form a
very small fraction of the view). This makes the problem of design-
ing towers to optimize views both interesting and non-trivial.

3.2 View Computation

We compute the different view metrics using a rasterization ap-
proach. Given a view point and a look at direction, the camera
is placed at that point and positioned along the required direction.
The scene is then rendered to a texture in which each color channel
is used to encode different properties of the scene – distance from
camera, material type (water, park, building), building types (land-
mark, landscape, or regular), and building age. The pixels in the
resulting texture are then appropriately aggregated to compute the
view metrics.

To compute the view metrics of a building, the building is first di-
vided into a set of fixed sized windows. Here, the height of the
window is equal to the proposed floor height of the building. The
view metrics are then computed for each window at its center along
the direction of the window’s outward-pointing normal. The view
metrics of the building is then defined as the average value of the
metrics over all windows.

3.3 Indexing Strategy for View Computation

The number of view metric computations required for a given build-
ing is equal to the number of windows in that building. A typical
building has several thousands of windows, making it expensive to
compute its view metrics. Thus, the process of computing view
metrics for a large number of buildings is computationally expen-
sive. This would in turn limit the ability of identifying high per-
forming building designs, since this process would require the view
computation from millions of windows (see Section 4).

In order to speedup this operation, we propose a simple, yet effec-
tive indexing scheme (illustrated in Figure 4) that allows for the
efficient computation of a good approximation of the view metrics.

Building the Index. Given a building site, we first create a hex-
ahedral tower which is the extrusion of the bounding box of the
development site. The height of this tower is equal to the maximum
permissible height (for NYC, this values is equal to 2,000 feet as set
by the Federal Aviation Administration). Such a tower has a prop-
erty that it would envelope all the candidate buildings for that site.
We are interested in computing views inside this volume, which we
refer as the envelope. A regular volumetric grid is created from this
tower, where the nodes of this grid correspond to the different view
points. The view metrics are computed for each of these points
along a discrete set of view directions surrounding that point. Fig-
ure 4 shows the top view of a horizontal slice of this volume. The
view points are colored gray, and the view directions from which

Figure 4: Illustration of our indexing scheme for efficient compu-
tation of view metrics. One slice of the envelope is shown together
with a set of grid points (gray) and a set of sample directions (or-
ange circles). Given a pair of a point location and a look at di-
rection, the view metrics are approximated by retrieving the values
associated with the closest point-direction pair in the index. This
process is illustrated for the different windows of the building (black
points) along the direction normal to each window.

the view scores are computed are represented as circular disks in
the figure.

Each view point together with the view direction can be encoded
using 4 variables, namely the coordinates (x,y,z), and the view di-
rection angle θ . Note that we assume that the view direction is
horizontal (i.e., parallel to the ground). Computing the view met-
rics of all the view points along the different directions results in a
multi-variate function defined on 4D space. Based on the accuracy
preference of the user, the resolution of the envelope grid and the
number of view directions can be optionally varied.

Evaluating view metrics using the index. Given a point p con-
tained in the envelope and a view direction d, the corresponding
view metrics are computed as follows. The 4D point defined by
p and d is used as the key to look-up in the index. This look-up
process, when using the nearest neighbor to approximate the given
point, is highlighted in Figure 4. Note that this look-up for a given
4D point is a constant time operation. We later show in Section 6,
that this indexing scheme is efficient and also results in a very good
approximation of the actual view metrics.

4 Topology-based Design Classification

The key idea in our framework is the use of concepts from compu-
tational topology to efficiently identify the parameters of different
design variations that maximize the view scores. We now describe
the view function defined on the design parameter space and ex-
plain how the topology of this function is used to identify possible
design variations for the catalogue.

4.1 View Function

In this paper, we focus on buildings that are towers formed by con-
necting multiple profile curves at different heights. Each of these
profile curves can be appropriately transformed via different op-
erations such as scaling, rotation, etc. to obtain different building
designs. The view scores of such buildings are dependent on the ex-
tent of each of these d operations. Assuming the magnitude of each
of these operations is in M= [0,1], the set of possible building de-
signs is represented by the d-dimensional design parameter space
Md . The view function is then defined as f : Md →R, a real valued
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Figure 5: An Example view function. (a) A 2-dimensional parameter space is defined using the rotate and scale operations on a hexahedron.
(b) The view function is defined on the parameter space and is represented as a terrain, where the height indicates the view score. (c) The
design variations corresponding to the four maxima of the view function.

(a) (b) (c)

Figure 6: The contour tree is used to identify the design variations
as the topological features of the view function. (a) The contour tree
of the 2-dimensional view function in Figure 5(b). (b) The influence
regions of the extrema are highlighted using the same color as the
corresponding leaf edges of the contour tree. (c) The simplified
contour tree after removing the maximum D.

function that maps each point of the d-dimensional parameter space
to the view score of the corresponding building.

For example, consider a building design that is a hexahedron which
is constructed by connecting two squares. For ease of exposition,
consider the following two operations – scale and rotation of the top
square of the hexahedron as illustrated in Figure 5(a). These two
operations form a 2-dimensional parameter space, M2, of building
designs. A sample view function defined on this space is illustrated
as a terrain in Figure 5(b). The height of a point in this terrain
represents the view score of the corresponding building. The set of
operations that constitute the different dimensions of this space are
described in detail in Section 5.

4.2 Topology Background

Consider the 2-dimensional view function in Figure 5(b). The dif-
ferent “peaks” in this figure correspond to parameters that locally
maximize the view function. For example, the building designs for
the four peaks in Figure 5(b) is shown in Figure 5(c).

Generalizing this to higher dimensions, our goal is to use the set
of significant maxima of the view function to classify the possible
building design variations that can be used by architects. In order
to efficiently compute the candidate set of maxima, we propose to
use a topological abstraction of the function called the contour tree.

Level set topology and Contour trees. Given a smooth real-valued
function f , the critical points of f are exactly where the gradient
becomes zero. Regular points are those which are not critical. The
preimage f−1(a) of a real value a is called a level set. It is the set
of all points on the domain having function value equal to a. Two
level sets, in blue and red, of the 2-dimensional view function are
highlighted in Figure 5(b).

The contour tree of a function f defined on a simply-connected
domain tracks the evolution of the topology of its level sets with
changing function values [Carr et al. 2003]. Topological changes
occur at critical points, whereas topology of the level set is pre-
served across regular points [Matsumoto 2002]. Formally, the con-
tour tree is defined as the quotient space under an equivalence re-
lation that identifies all points within a connected component of a
level set.

Figure 6(a) shows the contour tree of the view function shown in
Figure 5(b). The nodes of the contour tree correspond to critical
points of the function. In particular, leaves of the contour tree cor-
respond to the set of maxima and minima of f . The advantage of
this structure is that it can be used to efficiently identify the set of
significant maxima, where the significance is defined using topo-
logical persistence.

Topological Persistence. Consider a sweep of the function f in in-
creasing order of function value, as mentioned earlier, topology of
the level set changes at critical points during this sweep. In partic-
ular, at a critical point, either a new level set component is created
or an existing level set component is destroyed. A critical point
is a creator if new topology appears and a destroyer otherwise. It
turns out that one can pair up each creator c1 uniquely with a de-
stroyer d1 which destroys the topology created at c1. The topolog-
ical persistence [Edelsbrunner et al. 2002] of c1 and d1 is defined
as f (d1)− f (c1), which intuitively indicates the lifetime of the fea-
ture created at c1, and thus the importance of c1 and d1. In the
2-dimensional case, the persistence of a maximum (minimum) is
equal to the height (depth) of the peak (valley).

4.3 Design Classification

In order to support efficient representation of the parameter space,
we model the high dimensional space Md as a k-nearest-neighbor
graph Gd of a set of points sampled uniformly from Md . The view
function is then defined as a piece-wise linear (PL) function fv :
Gd → R, where the function is defined on the vertices of Gd and
linearly interpolated within each edge. The contour tree of fv is
then computed using the sweep algorithm [Carr et al. 2003]. This
algorithm takes O(n logn+mα(m)) time, where n and m are the
number of vertices and edges, respectively, in Gd .

The contour tree is then used to simplify the function to remove low
persistent (noisy) critical points. This is accomplished by removing
low-persistent leaves from the contour tree [Carr et al. 2004]. This
amounts to smoothing the input function in the region correspond-
ing to the removed edges. For example, the peak corresponding to
maximum D is small (and thus has low persistence). It is removed
(Figure 6(c)) to generate the de-noised function which smoothes out



the region corresponding to D (colored cyan in Figure 6(b)). The
persistence based simplification using the contour tree can be per-
formed efficiently in O(n logn) time [Carr et al. 2004]. When two
maxima have similar function values but are close to each other in
the input domain, one of them typically has a low persistence value.
Such maxima are therefore removed during the simplification pro-
cess. Intuitively, this filtering is equivalent to retaining a single
design variation from a set of designs having similar properties (by
being close to each other in the parameter space).

Once the function is simplified to remove noise, the resulting set of
maxima forms the candidate building designs of the catalogue for
a given category (see Section 5.2). For the view function in Fig-
ure 5(b), the building designs corresponding to the three remaining
maxima, A, B and C, form the three design variations for the cat-
alogue. The simplification threshold can optionally be specified
by the user interactively. Further, given a minimum view score,
the remaining maxima can also be filtered to retain only those hav-
ing view score greater than the minimum score. We use a default
threshold of 0.01, which removes all critical points having persis-
tence less than 1% of the highest function value.

5 Design Catalogue

For a given project, architects select a building type for the con-
text and program (such as office or residential), and then come up
with a handful of design categories to develop. The tower designs
considered during the early design stage are typically constructed
through a set of simple operations, and are later refined relative to
context and program. We select a range of design categories and
operations representative of early tower design exploration, which
we first describe in this section. The design variations, also referred
to as massings, resulting from a combination of these operations
are then used to generate the parameter space for the topological
analysis. Finally, we describe the catalogue interface using which
architects can explore design variations across different categories.

5.1 Design Categories

In this work, we are interested in towers which are generated
through a series of profile polygons. The profile polygons are ei-
ther connected through lofting one profile to the next, or extruding
each profile vertically up to the height of the profile above (see Fig-
ure 7). We assume that all the profile polygons for a given design
have the same number of sides. The profile polygons could op-
tionally have filleted (or rounded) corners allowing for a spherical
facade. We assume that a uniform fillet is applied on all corners of
the profile polygons. While we assume convexity, the profile poly-
gon need not be regular. We use the term block to indicate the part
of a tower between two consecutive profile polygons.

The above properties are then used to classify possible design vari-
ations into a set of design categories. Each design category is
uniquely defined using a 5-tuple, whose elements are: (1) number
of sides in the profile polygons; (2) number of blocks; (3) profile
polygon connectivity – loft or extrude; (4) building facade – fillet
or no fillet; and (5) polygon shape – regular or not.

5.2 Design Operations and Parameter Space

Given a design category, we support a set of geometric operations
that can be applied on the profile polygons to obtain design varia-
tions. The different supported operations are summarized below:

Scale: In case the given category should have regular shape, a pro-
file polygon is uniformly scaled. Otherwise, the profile polygon is
scaled non-uniformly along the x and y axes.

Figure 7: Design variations for a proposed tower building are ob-
tained though a set of operations that are performed on profile poly-
gons. It is typical for architects to start the building design process
with variations on primitive shapes. A high level design category is
first chosen based on whether the tower is to be constructed using
the loft operation, or the extrude operation. A subset of the possi-
ble design variations when the tower is constructed using the loft
operation is shown on the right. Here, the design variations were
obtained using combinations of two operations.

Rotate: A given polygon can be rotated within a permissible range
with respect to the polygon below it. This is to ensure that the
“twist” that occurs always results in valid structures.

Horizontal movement: The profile polygon can be translated hor-
izontally. The maximum possible translation is determined by the
intersection to adjacent profile polygons, and is ensured to be within
the development site.

Vertical movement: The designed tower has to satisfy zonal con-
straints such as the floor-area ratio (FAR), which is the total area al-
lowed as a factor of the lot area. Thus, having profile polygons with
large areas will result in shorter towers and vice versa. Therefore,
the vertical position of a profile polygon is implicitly determined
by the number of floors in the corresponding block, and hence, the
vertical movement can be controlled by the total floor areas that is
assigned to each block. To avoid arbitrarily high towers, zoning
regulations usually dictate the maximum allowed height.

Figure 7 illustrates a subset of design operations together with the
possible design variations when using a tower that is generated by
lofting one profile to the next.

The permissible set of operations for each of the categories deter-
mines the dimension d of the corresponding design parameter space
Md . Each of these operations contribute to either one or two dimen-
sions of Md . For example, the scaling operation contributes to one
dimension per profile polygon for a category with regular polygon
shape, while it contributes to two dimensions per profile polygon
when non-uniform scaling is used. On the other hand, the rotation
operation always contributes one dimension to Md .

A building variation corresponding to a d-dimensional point is gen-
erated by performing the geometric operations defined by the coor-
dinates of that point. We always start this generation with a base
set of profile polygons that are regular having the given number of
sides. In this paper, we fix the number of sides of the profile poly-
gons to be four.



Figure 8: The different components of the catalogue exploration interface. (a) Summary panel. (b) Building cart. (c) View panel. (d) 3D
map. (e) Design exploration chart. (f) Design selection controls.

5.3 Catalogue Exploration Interface

We develop a visual exploration interface that allows users to ex-
plore and evaluate the design variation across various design cate-
gories and view preferences. The interface, shown in Figure 8 and
the accompanying video, is composed of three main components:

Design Selection. This component allows users to select the de-
sign category and set their view preferences. A design category is
selected by changing the set of design properties. The view prefer-
ence is specified by providing weights for the different view met-
rics. The view scores of the different buildings in the parameter
space is then computed as the weighted sum of the corresponding
view metrics to obtain the view function.

Design Exploration. This component allows the user to explore the
identified design variations. It consists of three linked visualization
widgets – a summary panel, a building cart and a 3D map. Once
the set of significant maxima of the view function are computed,
the summary panel visualizes the corresponding building geome-
tries using a color map. The building cart acts as a shopping cart,
allowing users to save designs of interest. The designs in the cart
can span across different categories and view preferences.

Users can view a building design in the context of its neighborhood
on the 3D map by selecting the design of interest from either the
summary panel or the building cart. The context provided by the
3D map allows users to understand the possible view opportunities
of different designs and help in the evaluation process. This can
help inform manual refinement of the designs.

Design Evaluation. This component allows users to evaluate and
compare the performance of the design variations present in the
summary view as well as the building cart. It is composed of two
linked visualization widgets – a design exploration chart and a view
pane. The design exploration chart uses parallel coordinates to al-
low the user to compare and filter building design variations. Each
axis of the chart represents one view metric.

The design exploration chart can be used in two modes – building
mode and window mode. In the building mode, the set of high di-
mensional points (lines of the chart) represents the building designs

currently loaded in the summary panel or in the buildings cart. In
this mode, there are two additional axes in the parallel coordinates
representing the building efficiency and the floor overlap area of
the corresponding design. The building efficiency is defined as the
ratio of the area of the building core to the total built area. The
building core is primarily comprised of the elevator shafts, stairs,
and mechanical equipment. The floor overlap area is the area of
the intersection between all floors of the building. A feasible de-
sign should have overlap area greater than the area of the building
core. In the window mode, high dimensional points represents the
windows of the selected building. This mode has an additional axis
representing the floor corresponding to a window, and helps users
select windows of interest. The view, as seen from the windows
that are selected using the chart, can be inspected using the view
pane. Additionally, the user can also compute the reach with re-
spect to a selected set of windows, which essentially highlights all
the buildings that can be seen from these windows.

Other features. In order for our framework to be included in the
actual architectural design workflow, the interface also supports ex-
porting building design variations together with the associated view
performance information. Importing this data into common 3D
modeling software allows architects to calibrate the design options
relative to other criteria such as zoning regulations (not part of this
work), while still maintaining high view performance. It also sup-
ports importing building designs so that they can be evaluated and
compared with those generated using our technique.

6 Implementation and Experiments

The design catalogue was implemented using C++, Qt 5.4, and
OpenGL 4.3. We now briefly describe the choices made during
the implementation, and discuss results from our experiments eval-
uating the performance of the index.

6.1 Implementation

Preprocessing. As discussed in Section 3.2, we first pre-compute
the view index for the building site. Computation of the view met-
rics is essentially the aggregation of values encoded in the color



(a) (b)
Figure 9: View metric accuracy. (a) Cumulative distribution of the absolute errors between the actual and computed view metrics. Note that
the error is less than 0.05 for over 90% of the points for all metrics. (b) Comparison of view metrics at a building scale.

channels of the pixels of the view, which can be easily parallelized
using the GPU. We make use of compute shaders for this compu-
tation which is part of the OpenGL pipeline. This also helps avoid
the costly memory transfers between the GPU and CPU.

Design parameter space Gd . We use Latin hypercube sam-
pling [McKay et al. 2000] to generate sample points in Md . We
then construct the discrete domain Gd as the k-nearest neighbor
graph of these points. In our experiments we use k = 20. We find
that this value provides a reasonable approximation of the connec-
tivity between points in the space.

Computing the view function. Even though computing the view
score of a single window from the index is extremely efficient (see
next section), computing the various view functions typically re-
quires the view score computation of several tens of millions of
windows. However, the number of possible design categories are
finite for a given number of blocks and number of sides of the
profile polygon. Therefore, when preprocessing a given develop-
ment site, we also compute and store the view metrics for the dif-
ferent possible parameter spaces corresponding to the different de-
sign categories. Thus, when users update their view preference, the
view function will only have to be computed from the view met-
rics, which will in turn be used to compute the topological features.
Given that this is an embarrassingly parallel operation, we utilize
the multiple CPU cores available to further speedup this computa-
tion. Alternatively, the GPU could also be used for this purpose.

Context 3D map and buildings. Our map visualization makes use
of geospatial data extracted from OpenStreetMap [Wiki 2015] to
render the context map layer in real-time. OpenStreetMap (OSM)
is a community-built database that aims to provide a complete map-
ping of data across the world with many rendering frameworks
available, notably the rasterized, tile-based “slippy map”. How-
ever, they are only limited to 2D rendering (with some being 2.5D,
e.g. showing a fixed angle view) with pre-rendered images. In
particular, it would not be possible to produce arbitrary 3D visu-
alizations as illustrated in Figure 1, let alone interactive addition
of customized building designs and annotations. Thus, we chose a
direct, vector-based rendering approach to provide both flexibility
and scalability for our mapping framework.

For the purpose of our application, we are only interested in the
road networks, land use and buildings tags of the OSM database.
While high resolution CAD models are available for popular build-
ings in New York City [SketchUp 2015] such as the Empire State
Building or the Freedom Tower, the repository is far from com-
plete. On the other hand, buildings in OSM are updated daily by
the community by either tracing aerial imagery (e.g. Bing Maps) or
through street-level observations and measurements, thus, provid-
ing reliably accurate information. Our system supports both CAD
models and OSM buildings to allow high-quality rendering of land-
mark structures, and to efficiently manage a complete view of the
context buildings, respectively. Since building shape in OSM is
defined implicitly by a set of outlines, extruding heights, and roof

types, we render them using tessellation shaders to minimize the
data storage and transfer bandwidth.

6.2 Experiments

The experiments were performed on a workstation with a Intel
Xeon E5-2650 CPU, 32 GB RAM, 3 TB of disk storage, and an
Nvidia GTX 680 graphics card having 3 GB of GPU RAM. The ex-
periments reported next were performed using the two potential de-
velopment sites that were selected by the architects (see Section 7).

Performance analysis. As mentioned in Section 3.2, we encode
the different view properties in the color channel while rendering
the scene in order to compute the view metrics. We get on an aver-
age around 130 fps to render the views at a resolution of 256×256.
The resolution of the grid for the view index was 10 ft×10 ft along
the xy-plane, and every 12 ft above the ground (which is equal to
the floor-to-floor height). This ensures that the sampled points are
aligned with the different floors of any building on that site. Also,
at each sampled point, the view was computed along every 6◦, re-
sulting in 60 directions for each point. The computation of the in-
dex therefore required the computation of 6.4 million views and
7.48 million views for the two sites respectively. This took a total
of 860 minutes and 936 minutes respectively. This time includes the
time used by the compute shader. For a single image, the time spent
on the compute shader was significantly less than a millisecond.

The approximate view metric computation, which is essentially a
constant time index look-up, was possible on an average of 33.3K
computations per second on a single CPU, over two orders of mag-
nitude faster than the exact computation.

Index accuracy. The approximate view metrics computed using
the index, in addition to being efficient, should also be reasonably
accurate in order to be beneficial. To test the accuracy of our ap-
proximation, we compared the view metrics computed using our in-
dex against the actual view metrics. The experiment was performed
on a set of 20000 random points, 10000 from each site along ran-
dom directions. Figure 9(a) plots the cumulative distribution of the
absolute error for the different view metrics. Note that the error is
less than 0.05 for over 90% of the points for all view metrics. In
fact, for metrics other than the building variation view, the error is
less than 0.01 for close to 90% of the time. This is because, the
building variation view is highly dependent on the number of dif-
ferent buildings that are visible, and even a slight deviation would
have greater impact on the score when compared to other metrics.

The view function is computed on a building scale, where the view
score of the building is the average of the view scores over its win-
dows. Thus, the impact of the above errors is even less when con-
sidering them at a building scale. For example, the scatter plots in
Figure 9(b) assess the accuracy of the index at a building scale for
the unobstructed and building variation views respectively, which
had the highest error margin in Figure 9(a). This experiment was



Figure 10: The views obtainable from different height zones (20 floors each) from the two sites in Financial district and Midtown. The
buildings highlighted in red indicate the reach from these zones. The inset shows the typical view from a representative window.

performed for a random set of 100 building designs, and the max-
imum absolute error for these two view metrics was 7× 10−3 and
10−2 respectively.

While increasing the grid resolution of the index would improve
the precision of the approximation, it increases the index creation
time. However, the lookup time, being an O(1) operation, does not
change. In this paper, we chose the resolution that provided a good
trade-off between precision and index creation time.

7 Case Studies

Architects begin with a program (office or residential) and a site,
both provided by the client. The first part of the architectural de-
sign and development workflow is an analysis of the site by test
fitting the program to understand site limitation and opportunities
relative to the required program. Based on the results of the analysis
the architect will generate three to five simple, but distinct design
schemes. These schemes are then refined relative to client feed-
back, zoning regulations, structural requirements and environmen-
tal goals. Finally, a single scheme is selected to develop further,
eventually being constructed.

To demonstrate the capacity of our framework we present two use
cases which illustrate its usefulness within the above workflow.
First, in Section 7.1, we use our framework to compare the possible
views that can be obtained on two different sites, one in Financial
District and the other in Midtown. This will help developers to
identify view types that have to be prioritized for a given site. Next,
in Section 7.2, using the insights gained from the above analyses,
we focus on the Financial District site and use our framework in the
schematic architectural design of a hypothetical mixed use tower.

7.1 Use Case 1: Site Comparison

Multiple sites within the same urban environment can often have
radically different view potentials depending on the built environ-
ment. Both of the sites selected for this comparative analysis are
surrounded by tall, high density development. The Financial Dis-
trict site (Site 1) is a full block in an organic grid configuration with
four narrow street frontages. In contrast, the Midtown site (Site 2)
is a double corner lot at the east end of a typical Manhattan block
with frontage along one wide avenue and two narrow cross-streets.
Figure 10 highlights the location of these sites. To evaluate the
set of views possible, we use a simple one block building with the
extrude option and a no-fillet facade. We then use the maxima iden-
tified from the topological analysis to understand the kind of views
possible from each site.

Both sites have views with close distance obstructions at lower lev-
els. Assuming a typical 12 ft floor to floor height, the unobstructed
views start improving at around the 20th floor for Site 1, and the
30th floor for Site 2. This is predominantly due to existing building
streetwalls opposite the narrow cross-streets bordering each site.
Exceptional views, achieving an average view depth of 400 ft or
greater, begin for Site 1 at approximately the 40th floor facing east,
and for all orientations above the 70th floor. This can be slightly
improved when the tower faces are rotated towards the street inter-
sections rather than aligning with the lot lines. Interestingly, the
tallest tower in the immediate context of Site 1 which negatively
impacts unobstructed views is the Trump Building, a designated
New York City landmark. Views of this building are achievable
at all floors from the northwest corner of the site across the street
intersection. In contrast, landmark views for Site 2 to the Empire
State Building or Rockefeller Center begin as narrow, partial views
at the 20th floor and significantly improve above the height of the
surrounding context at the 40th floor.



Figure 11: Filtering building designs to retain only those having above average values for efficiency and overlap resulted in a total of 16
designs across the loft and extrude categories. The average performance is indicated using the blue line in the parallel coordinate chart.

This is further corroborated using the reach functionality of the cat-
alogue interface. The facade surfaces within three, 20-floor zones
were evaluated for their view reach shown in Figure 10. The max-
ima with the highest unobstructed view was chosen for this analy-
sis. The inset in the figure shows a representative perspective view
from one window each on floors 20, 60 and 100 respectively.

Battery Park is located a quarter mile south of Site 1. How-
ever, evaluating for visibility to open green space reveals only low
scoring views, through narrow gaps between buildings, could be
achieved starting at the 45th floor. This is in part due to the obstruc-
tion caused by the surrounding tall development configured within
an organic city grid. On the other hand, this site is located near the
southern tip of Manhattan where the East River and Hudson River
converge. River visibility is found to be a more contextually ap-
propriate Landscape View evaluation method for this site since the
surrounding body of water is both continuous and greater in surface
area than Battery Park. High quality river views begin on this site
facing southeast at the 40th floor.

Site 2 is also located a quarter mile from an open green space: Cen-
tral Park. Multiple tall buildings are located between the park and
the site with the potential to impede these views, however their con-
figuration on the more regular Manhattan city-grid was found to
accommodate better viewing opportunities. The Landscape View
evaluation for Site 2 identified a slight northwest orientation, out of
alignment with the city grid, which achieves the largest amount of
high scoring park views. This specific rotation opens up view op-
portunities, starting at the 25th floor, through a diagonal mid-block
view corridor. While Site 2 is located a greater distance from either
river than Site 1, high quality river views are still achievable around
the 50th floor.

A similar analysis process evaluating for views with Building Vari-
ation revealed that both sites have multiple opportunities for views
with a diverse composition of buildings.

In summary, Site 1 was found to provide high quality views at lower
floor levels than Site 2 for the Unobstructed View, Landmark View
and Landscape River View types. It was also revealed that only low
quality park views are available on Site 1 while Site 2 has the po-
tential to achieve high quality park views at floor levels well below
the height of the tall building obstructions in the immediate context.

7.2 Use Case 2: Building Design

We now focus on the Financial District site to demonstrate the ca-
pacity of our tool in the schematic design of a hypothetical mixed
use tower with high view performance. As the designers for this
project, we use the insight on view trends gained from the first use
case to prioritize certain view types and design categories while ex-
ploring the possible design variations.

Design Configuration and View Preference. For this project, our
goal is to have a tower with three multilevel programmatic zones
one on top of the other: hotel in the lowest zone, service apartments
in the middle, and high-end condominiums at the top. To contain
the three zones within a single building form we will explore design
categories with three blocks generated via both the extrude and loft
operations.

We prioritize unobstructed view, landscape river views, and build-
ing variation views based on the assessed view potential for the
site and hypothetical designer and client preferences. Accordingly,
we weight the view metrics to consider the following three view
options: (1) Unobstructed 0.4, River 0.4, Building Variation 0.2;
(2) Unobstructed 0.4, River 0.3, Building Variation 0.3; and (3) Un-
obstructed 0.3, River 0.4, Building Variation 0.3.

From among the building variations for each category and view
preference combination, we only select buildings having both ef-
ficiency and overlap value greater than the corresponding averages
to find commercially viable buildings. This process for Option 1 is
illustrated in Figure 11, which resulted in 6 lofted and 10 extruded
buildings. Repeating this process for the other view options resulted
in a total of 48 buildings which were then saved to the building cart.

Identifying Good Designs. Determining which building option to
develop further requires the comparison of the view performance
and testing the feasibility of planning a commercially viable build-
ing using the design. We first filter the saved set of designs to retain
only buildings having view metrics for river, building variation, and
unobstructed view above their respective averages. Figure 12 shows
the different designs from this set that have the best performance
with respect to the view types of interest.

By looking at designs that have the best view for the different view
types (from among the filtered designs), we found that designs hav-
ing higher building efficiency typically have a lower view scores.
Our focus is to find an option which is balanced, that is, has good



Figure 12: High performing designs across view types are consid-
ered, and a design that maintains good balance between the view
metrics and building efficiency is selected for further refinement.
The red line in the parallel coordinate chart indicates the perfor-
mance of the selected design while the blue line indicates the aver-
age performance of the designs being considered.

efficiency as well as consistently higher values over all view met-
rics. We accordingly select the building design that maintains a bal-
ance between building efficiency and the view scores, highlighted
in the parallel coordinate chart in Figure 12.

Design Calibration. Further geometric refinement is performed on
the selected building design to ensure that the other criteria, such as
structure or zoning, are also maintained. We use Grasshopper and
Rhino for this process. In particular, we calibrate the overall design
for the location of the building core, usability of individual floors,
and view opportunities (obtained from our earlier analysis). For
example, while fitting the building core into the design, the blocks
might need some minor alignment. Parts of the massing are further
adjusted based on their respective use (e.g., hotel or residential) and
mechanical floors are introduced. Mechanical floors are dedicated
floors containing mechanical and electrical devices used in the op-
eration of the entire building system. This process for one such
refinement is illustrated in Figure 13.

In addition to the view metrics from individual windows of a build-
ing, the exported data also contains information about the best view
direction for each window. We use this information to design a fa-
cade system where individual window panels are tilted to take ad-
vantage of specific view opportunities (Figure 14(a)). Figures 14(b)
and 14(c) show two refined building design options that are gener-
ated from the design selected in Figure 12. When compared to the
original design, the performance of refined the designs improves
with respect to the river and unobstructed views (see Figure 14(d)).

Finally, the design in Figure 14(b) (shown along with its context in
Figure 1) is chosen to be developed into a building. Figures 1 and
14(e) show the final building that is proposed to the client.

8 Discussion and Conclusions

We now briefly discuss the limitations of our technique and outline
directions for future work.

Assumptions during view computation. We assume that the
views are not occluded from the same building for which they are
computed. However, this is not always true especially for extruded
buildings. For example, a larger block could occlude views from

Figure 13: The selected design is appropriately calibrated to en-
sure that it conforms to the program.

a smaller block below it, especially on floors close to it. This can
be overcome by using a two pronged approach which first identifies
view points having such issues, followed by explicitly computing
the views for these points.

Another assumption we made is with respect to view direction. We
assume that the direction is always normal to the view window.
This could miss the possible views that could be obtained by look-
ing downward from a window. However, adjusting the view angle
to be slightly larger than a human field of view could account for
moderate head tilting. Alternatively, different aspects of the views
could also be captured by using a weighted field of view.

Improving view computation. Currently, when calculating view
metrics, we cannot obtain the actual views; just the values. Thus,
when the user requests for views from a particular point, we have
to recompute the views from that point. This could be overcome by
using light fields [Levoy 2006] to store pixel values for all possible
directions and using it for both view generation as well as view
metric computation. The main challenge in using this approach
is the space required for storing the light field. In addition to the
regular pixel color, we also need to encode other details required
for view metric computation for each ray. Given the size of the
building site and the resolution at which we require the views, we
estimate several tens of giga-bytes of space required to store the
light field for a single site. It will be interesting to explore encoding
which can efficiently store and retrieve such a light field.

Customizing view functions. Our current implementation assigns
the same view preference (weights) to all floors of a building. It
would however be interesting for different floors to have different
view preferences, allowing architects to customize different floors
of the buildings to particular types of views. This can be accom-
plished by weighing the view scores based on the floor when com-
puting the building’s score, and can be easily incorporated into
our framework when generating the scalar function for topological
analyses.

Improving building design quality. Due to the sampling of the
parameter space that is performed, the identified maxima need not
be an actual maxima in the continuous parameter space but would
be close to it. This is however acceptable since architects are inter-
ested in identifying diverse design options with good performance,
not necessarily the best options. An additional step of optimization
performed using an identified maximum as seed point and travers-
ing the parameter space towards the actual local maximum could
produce the best design options as well.



Figure 14: After calibrating the selected design, it is further refined to fine tune the views form different windows (a) to obtain refined
designs (b) and (c). The refined design performs better than the original design with respect to the river and unobstructed views (d). Here,
the red and green lines corresponds to the refined designs while the brown line corresponds to the originally selected design. Finally, one of
the designs is selected to be developed for the client (e).

Factors affecting tower designs. In the design of a tower there are
many interdependent relationships that determine the size, shape
and design. For example, the floor plate size is determined by the
use and the core size. In NYC the distance from the core to the
exterior wall in a residential tower is typically 25–35 feet, but is
45 feet for office. The number of elevators in the core also varies
depending on the program. The depth of the floor plate then drives
the structural systems, which then drives the floor to floor height as
a longer span results in deeper structure and hence a higher floor
to floor. Similarly, as mentioned in Section 5.2, floor plate size to-
gether with FAR influences the height of the building. While we
consider FAR in the building generation process, we do not pro-
cedurally model the building core. Instead, the building efficiency
metric allows architects, through the interface, to filter for viable
designs based on the program. The actual fitting of the core into the
design is done later during the design calibration process.

Handling the dynamic nature of cities. As cities evolve with time,
some views are more likely to be affected by new constructions than
others. One interesting direction for future work is to use predictive
models and simulate the consequences of future developments.

Conclusions. In this paper we proposed a topology-based tech-
nique to identify high performing building design options with re-
spect to view quality. To efficiently accomplish this, we first de-
fined ways to quantify different perspective views and transform
the problem of computing the corresponding metrics to an efficient
texture lookup operation, which was then used to compute the view
function. The topological features of the view function was then
used to identify a diverse set of high performing building designs.
We also developed an interactive visual interface to explore the de-
sign space based on a user’s view preferences. The effectiveness
of the proposed framework was demonstrated through use case sce-
narios involving real world building sites, and it is currently being
used by our practicing architect collaborators.

Acknowledgements

This work was supported in part by a Google Faculty Award, an
IBM Faculty Award, the Moore-Sloan Data Science Environment
at NYU, the NYU School of Engineering, the NYU Center for Ur-

ban Science and Progress, Kohn Pedersen Fox Associates, AT&T,
NSF awards CNS-1229185 and CCF-1533564, and the Brazilian
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq).

References

AVERKIOU, M., KIM, V. G., ZHENG, Y., AND MITRA, N. J.
2014. ShapeSynth: Parameterizing Model Collections for Cou-
pled Shape Exploration and Synthesis. Computer Graphics Fo-
rum 33, 2, 125–134.

BENSON, E., HANSEN, J., SCHWARTZ, ARTHURL., J., AND
SMERSH, G. 1998. Pricing Residential Amenities: The Value
of a View. J. Real Estate Finance Econ. 16, 1, 55–73.

BERGER, W., PIRINGER, H., FILZMOSER, P., AND GRÖLLER,
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