
This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

AMIC: An Adaptive Information Theoretic
Method to Identify Multi-Scale Temporal

Correlations in Big T ime Series Data
Nguyen Ho*, Huy Vo t:J:, Mai Vu§, Torben Bach Pedersen*

*Department of Computer Science, Aalborg University, Denmark
tcenter for Urban Science and Progress, New York University, New York, USA

+Department of Computer Science, the City College of New York, New York, USA
§Department of Electrical & Computer Engineering, Tufts University, Medford, MA, USA

Email: ntth@cs.aau.dk, huy.vo@nyu.edu, mai.vu@tufts.edu, tbp@cs.aau.dk

Abstract-Recent development in computing, sensing and crowd-sourced data have resulted in an explosion in the availability of

quantitative information. The possibilities of analyzing this so-called Big Data to inform research and the decision-making process are

virtually endless. In general, analyses have to be done across multiple data sets in order to bring out the most value of Big Data. A first

important step is to identify temporal correlations between data sets. Given the characteristics of Big Data in terms of volume and

velocity, techniques that identify correlations not only need to be fast and scalable, but also need to help users in ordering the

correlations across temporal scales so that they can focus on important relationships. In this paper, we present AMIC (Adaptive Mutual

Information-based Correlation), a method based on mutual information to identify correlations at multiple temporal scales in large time

series. Discovered correlations are suggested to users in an order based on the strength of the relationships. Our method supports an

adaptive streaming technique that minimizes duplicated computation and is implemented on top of Apache Spark for scalability. We

also provide a comprehensive evaluation on the effectiveness and the scalability of AMIC using both synthetic and real-world data sets.

Index Terms-spatio-temporal data, correlation, streaming, Big Data, mutual information, adaptive sliding window, Apache Spark .

1 INTRODUCTION

Motivation The recent notable development of the so
called Big Data brings both excitement and confusion to
the research and industry communities. The availability of
massive, heterogeneous and rich data sets promises to con
tain interesting patterns and trends that once unlocked can
enable actionable intelligence and evidence-based decision
making. However, the tremendous amount of data gener
ated with high velocity and complex formats introduces
significant challenges in terms of computational reliability
and efficiency. The requirement of having scalable methods
to efficiently analyze large data sets becomes crucial to
capture and unveil insightful information in real-time.

Indeed, Big Data is worthless in the absence of such
methods. Only through analyzing multiple and crossed data
sets, the true value of Big Data can be harnessed. One of the
first steps towards creating new value in Big Data appli
cations is the discovering of correlations among heteroge
neous and cross-domain data sets. As data originally reside
in individual silos, each of them may serve for a specific
and/ or limited purpose. However, their combination can,
and often does, offer new insights into important problems.
Particularly in data exploration, data correlation can result
in the identification of individual events and phenomena,
as well as the creation of profiles to track these activities
even in real-time. Data correlation is also useful in con
structing and validating behavioral proxies. For example,

•

demonstrating that the traffic speed is well-correlated with
the number of taxi pickups through historical data sources
for which the latter are known directly (e.g., through the
NYC Taxi & Limousine Commission) would allow accurate
measurement of traffic speed in real-time. More broadly,
finding correlation among data sets will allow policy makers
to better understand cities, thus, providing better operations
and better planning to citizens. In the finance sector, data
correlation can help businesses make better investing de
cisions through forecasting the price movement of related
stocks, or predicting purchasing behavior of consumers. In
areas such as health-care, through identifying the associa
tion between variables, data correlation provides the first
clues to uncover root causes of phenomena of interest (e.g.,
a disease or a health condition). Although not implying
causation, data correlation is one of the three criteria for
establishing a causal relationship between two variables, as
argued by Agresti et al. in [1], thus discovering data cor
relations in heterogeneous data sources can be very useful
when building causal models.

Challenges and limitations of current approaches De
spite the promising use of correlations in the Big Data era,
finding correlations in Big Data corpuses is a hard problem.
Not only does the abundance of data make it impractical
to manually determine the correlation between them, their
usually large temporal coverage is also a challenge in iden
tifying periods of interest (e.g. an event) at different data
resolutions. Considering NYC Open Data [2], with more

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

than 1,500 data sets that have been published and updated
since 2009, it would take an immense amount of effort for
an analyst just to select a data set that is well-correlated with
another data set of interest and combine them together. The
challenge still persists even when correlated data sets have
been identified. For instance, when a policy adviser wants
to study the impact of taxi cabs on 311 complaints, s/he
would like to know, e.g., the particular day or week when
the two data sets have the highest correlation (if any). It is
not only necessary to know whether two data sets are well
correlated, but also when the correlations are the strongest.

Moreover, with Big Data the real challenge does not
come from its big volume alone, but more from its variety and
velocity properties where structured and unstructured data
are continuously and rapidly generated from large number
of sources. Methods to discover correlations in continuous
high-speed and complex time series streams have to be
scalable and efficient in order to deal with billions of data
items quickly. The methods also have to be robust enough
to deal with noisy data which very likely contain complex
and non-linear relations. This goes with the requirement
of having a correlation measure that can capture different
types of relations (e.g., linear vs. non-linear, functional vs.
non-functional), and has the ability to rank and establish
orders of discovered relationships.

When searching for correlations among heterogeneous
data sources, it is important to define criteria to determine
when an association is significant. For example, defining
a threshold where a combination above the threshold will
be significant and vice versa. Setting the threshold too low
can result in many uninteresting combinations, whereas
setting the threshold too high can potentially miss interest
ing associations. Having an appropriate method to set this
threshold so that correlations can be discovered even when
data characteristics and their relationships are unknown is
an important challenge to be addressed. Moreover, as real
world data can have patterns where correlations can appear
strong at one point but weak or completely disappear at
others, it is also important to have an approach that can
search for correlations regardless of data resolution.

Although significant work has been done in finding
correlations between data sets, relatively little investigation
has been made with adaptive temporal scales. Most of the
work in correlation analysis assume a fixed time scale for
each data set. For example, finding correlation between taxis
and weather will only return well-correlated periods either
in hours, in days, or in weeks. However, in practice, it is
common to see strong correlations between two data sets
at multiple temporal scales ranging from hours (e.g. during
rain showers) to weeks (e.g. during a storm). Additionally,
when multiple correlated periods are found, they are often
presented in the same way regardless of their significance.
Users then have to rank them manually for their analysis.

Contributions In this paper, we present AMIC, a scalable
and efficient framework for identifying multi-scale temporal
correlations in big data sets, addressing the volume, velocity
and variety challenges present in Big Data context. Particu
larly:

• We use mutual information (Ml) as a correlation
measure to capture and quantify the co-dependence
between variables, allowing us to discover different

2

types of relations potentially present in Big Data
context (e.g., linear and non-linear, functional and
non-functional). By quantifying the dependency, our
method has the ability to rank the significance of
discovered correlations automatically. Moreover, as
mutual information is a solid statistical measure of
co-dependence that works for different types of data
(e.g., text, numbers), AMIC helps overcome the vari
ety challenge of Big Data.

• AMIC is built based on an adaptive sliding window
technique, thus enabling us to discover not only the
correlated data sets, but also when the correlations
occur, and when they are strongest. We also propose
an optimized search method to address two Big Data
challenges:
- To handle large data volume, a layering and par
titioning mechanism is used together with an opti
mized computation technique. Data partitioning pro
vides the ability to handle billions of data items while
the layering approach automates filtering non-useful
data and adaptively changes resolution, thus sup
porting multi-scale temporal resolutions. The opti
mization technique helps minimize duplicated com
putation across streaming windows, and thus pro
vides an efficient search to meet timeliness require
ment.
- To address the velocity challenge, the method
is designed in streaming fashion to support real
time computation. The (nearly) real-time response is
achieved thanked to the distributed recursive par
allelizing mechanism, and the optimized MI com
putation technique. Moreover, the search method
returns window-based correlations which enables us
to trace the time intervals of correlation windows.
This allows us to suggest highly interesting temporal
periods to users for further investigation. For ex
ample, window-based correlation between taxi trip
and wind speed allows users to trace back extreme
weather events happened in NYC.

• We propose three different methods to define the
correlation threshold, and provide the justification
about their usage in different contexts. The pro
posed methods assist users in setting an appropriate
threshold even when no prior knowledge of data
characteristics and their relationships are available.

• We propose the formalization of positive and nega
tive associations to justify the nature of discovered
correlations in extracted windows.

• To meet the scalability requirement, we design and
implement a recursive parallel computation mech
anism on top of the Apache Spark platform. The
mechanism divides large data series into multi
ple smaller series, and recursively distributes them
among the worker nodes within the Spark clusters to
exploit the computational availability of the Big Data
platform.

• We perform a comprehensive evaluation of our tech
niques on both synthetic data sets and real-world
data sets (including the NYC open data, and the
energy production data). Synthetic data sets help
evaluate the correctness and the scalability, whereas

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

real-world data sets demonstrate the applicability
and relevance of our proposed method.

2 RELATED WORK

In this section, we review related work on the correlation
metrics, the correlation discovery techniques and the use of
mutual information in data analysis.

The correlation metrics: Traditional statistical metrics such
as covariance, correlation coefficients (e.g., Pearson, Spear
man) have been used extensively in the literature, for
example in [3]-[5], to identify correlations among data.
However these metrics are limited to linear and monotonic
(i.e., strictly increasing or strictly decreasing) dependencies.
Zhang et al. in [6] use correlation coefficient (corr) to analyze
correlations in spatio-temporal data sets. In order to re
duce computational cost, these authors exploit spatial auto
correlation among spatial neighboring time series and group
similar time series into cones before computing correlations
across data sets. Although the work uses corr, and thus only
works with linear dependencies (unlike our work), the idea
is interesting and could be exploited in a future extension
of our work for both temporal and spatial dimensions.
Other work exploits spatio-temporal correlations to serve
different purposes, e.g., to control and optimize Wireless
Sensor Network [7], video coding [8], anomaly detection [9],
and data compression [10], [11].

Recent work such as [12]-[18] attempts to approach the
problem from a high level. Sarma et al. [12] propose a frame
work to find related tables in a large corpus of databases,
using the concept of relatedness to capture different kinds of
related-relation between data tables. In [13], Pochampally
et al. propose to model correlations between different data
sources using joint precision (portion of correct outputs over
entire outputs) and joint recall (portion of all correct triples
that are output by all sources) as indicators. In comparison,
the work in [14] relies on history and schema of data sets
to map and link them together. In [15], Roy et al. use
the concept of intervention (i.e, changes in the values of
inputs affect the outputs) to look for causal explanation for
the answers of SQL queries. Yang et al. [16] use a residue
metric that measures the difference between the actual and
expected value of an object to capture objects correlation in
large data sets. Sousa et al. [17] propose a fast method to find
correlations among attributes in databases, using the con
cept of intrinsic dimension (a small subset of dimensions that
can represent entire data) to reduce redundant attributes.
Middelfart et al. [18] propose a bitmap-based approach to
discover schema level relationships in a multidimensional
data cube. These works differ from our approach as we aim
to look for not only relationships between data sets but also
the time windows where the data are well-correlated.

In a recent work [19], Chirigati et al. propose a topology
based framework to identify relationships between spatio
temporal data sets. The notion of topological features,
whose interestingness is captured by critical points (maxi
mum and minimum), is defined to represent the data sets
and identify relationships between them. The technique is
able to find both regular relationships and relationships at
extreme events. Our work is aimed at achieving similar
goals, and at the same time also picks out the exact time
windows where the correlations occur, and thus can be used

3

in conjunction with their work to have a more comprehen
sive technique and improve the data exploration process.

The correlation discovery techniques: Using window-based
techniques to find correlations is not a new idea. For
example, the work in [20], [21] also uses this technique
to search for correlations. However, they adopt different
correlation metrics, e.g., Schulz et al. [20] use Spearman
coefficient, while Cole et al. [21] use sketches. By using MI
as a measure and proposing robust methods to define the
correlation threshold, our work has the advantage of being
able to discover both simple and complex relations (more
in Section 3), and thus fits better into Big Data context.
In addition, we propose a divide-and-conquer approach
to avoid the common combinatorial explosion barrier of
correlating time-series data from large and varying data
sources, as well as introduce an optimized and scalable
computation framework built on top of a leading Big Data
platform (Apache Spark), and thus provide a more up-to
date solution to the problem of correlation finding in the
Big Data era.

In the context of data streaming, a recent work [22] of
Keller et al. proposes the MISE algorithm to estimate MI
for time series streams. What is different from our work is
that we use a top down approach to partition the data and
adaptively change its resolution, and thus help minimize
the search space, while at the same time still ensure the
capture of significant correlations. We introduce the concept
of influenced region to keep track of changes in the data, a
technique not used in [22]. Other work such as [23] instead
uses Discrete Fourier Transform to detect local correlations
in streaming data. Their focus, however, is on the delay and
linear local correlation.

In another recent work [24], Bermudez et al. use a sliding
window technique with two metrics, Pearson coefficient
and entropy, to discover correlations in spatio-temporal big
data. This work, however, differs from our work in several
significant ways. Instead of using just a single-size window
as in [24], our method uses a multi-layer sliding window
technique, and thus, can discover correlations at multiple
temporal scales. We further design an optimized algorithm
using specific data structures to minimize redundant com
putation. Our framework also offers the ability to rank the
relationships, so that discovered correlations can be ordered
according to their strength and significance.

The use of mutual information: The MI measure has been
broadly used in numerous domains to achieve different
goals, e.g., feature selection [25], [26], clustering and mining
[27], [28], image alignment and registration [29], network
inference and construction [30], [31], dependency discovery
in glucose measurements [32], or spatial temporal dynamic
of the magnetosphere [33]. In the context of Big Data, the
use of MI is relatively new. A recent work of Su et al. [34]
proposes a framework and a set of algorithms to analyze
relationships of massive scientific datasets, in which MI is
one of the metrics to measure correlations. However, they
only consider overall correlation and focus on data indexing
to efficiently compute correlation in parallel and distributed
setting.

The basic structure of AMIC has been initially investi
gated in our previous work [35]. In the present paper, on
top of a broad update of literature, we make the following

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

extensions to [35]: we propose three different theoretical
methods to set the correlation threshold, and justify their
usage in different contexts. We re-design AMIC using these
new threshold metrics. We propose the formalization of
positive and negative associations to justify the correlations
in extracted windows. We also improve AMIC performance
by introducing a new data structure, the influenced marginal
region, to keep track of changes in incremental computa
tion. We also design and implement a distributed recursive
parallel search method to address the velocity challenge of
Big Data and improve the scalability of AMIC. We make an
extensive evaluation of AMIC using both synthetic and real
world data sets, as well as perform a large-scale stress test
and scalability test using Spark clusters. These extensions
further formalize the AMIC framework and strengthen its
effectiveness in the current Big Data landscape.

3 BACKGROUND

3.1 Mutual Information: Definition and Properties
In information theory, MI has been used as a measure of mu
tual dependency between variables. It quantifies the amount
of information obtained about one variable through the
knowledge of other variables [36]. The mutual information,
I(X, Y), between two random variables X and Y specifies
how much knowledge about Xis gained through Y, or how
much uncertainty of X is reduced by knowing Y and vice
versa. MI is a function of the probability distribution, i.e.,
the probability density function (pdf) for continuous vari
ables and the probability mass function (pmf) for discrete
variables, and can account for both linear and non-linear
relationships. Eq. 1 defines the MI of two discrete random
variables X and Y: p(x, y)

I(X,Y)= L L p(x,y)log
(x) ()

(1)
yE{Y} xE{X} p p y

where p(x,y) is the joint probability of (X, Y), and p(x),
p(y) are the marginal probabilities of X and Y, respectively.

From Eq. 1, p(x, y) measures the probability that X
and Y are observed together, while p(x) and p(y) are the
probabilities that X and Y occur separately. The fraction
log(p(x, y)/(p(x) p(y))) determines the magnitude of joint
occurrence over the individual realization of the variables.
The larger this magnitude, the more likely these two random
variables occur together and thus, more likely they are
dependent on each other. Intuitively, if the two variables
are statistically independent, their MI is zero, meaning that
knowledge of one variable does not reveal anything about
the other. On the other hand, if the two variables are
statistically dependent, their MI will be greater than zero,
and attains a larger value as the dependency between the
two variables becomes stronger.

Mutual information has several properties making it
advantageous when evaluating correlations over other mea
sures such as covariance or correlation coefficient [37]. First,
mutual information is equal to zero if and only if the consid
ered variables are statistically independent, otherwise pos
itive if they hold any kind of dependency (e.g. functional,
non-functional [381). This property makes MI a versatile
measure to capture correlations and ideal for noisy data sets
which exhibit high degree of bias and abnormality, causing
their relationships often arbitrary and non-linear. Second,
mutual information is invariant under 1-1 transformations,

4

i.e, lxy = Iuv if u = u(x) and v = v(y). This property
says that under the transformation, if X and Y maintain
their distributions, their MI is preserved. This characteristic
is ideal in processing spatio-temporal data sets which are
often collected beforehand under different resolutions. For
example, in our reference case study, taxi data is collected
every minute while traffic speed is recorded each hour.

3.2 Estimating Mutual Information

Although MI is a powerful measure in discovering rela
tionships among data sets, it is challenging to apply in
practice due to difficulties when estimating probability dis
tributions. Among several estimation methods [39] (e.g.,
histogram, kernel density estimation), we choose a popular
non-parametric method proposed by Kraskov et. al. [40],
hereafter called the KSG method, to approximate MI
because of the following reasons: (1) This method
outperforms other estimators in terms of computational
efficiency, accuracy and is especially suitable for long and
chaotic time series [41]; (2) The method uses k-nearest
neighbor approximation and thus is data efficient (i.e., it
does not require very large samples), adaptive and has
minimal bias [40]. These reasons make the method
particularly suitable to study spatio-temporal data where
dependence between variables might only occurs at specific
times or locations.

KSG Mutual Information Estimator The main idea of
KSG estimator is that rather than directly computing the
joint and marginal probability distributions of considered
variables, it estimates the densities of data points in neigh
borhoods [40]. For each data point, it first searches for k
nearest neighbor clusters (k is a pre-defined parameter) and
computes distance d to the k1h-neighbor. Then, the popula
tion density within distance d is estimated by counting the
number of data points that fall inside d. This leads to the
computation of MI between X and Y as [40]:

I(X, Y) = 1/J(k) - 1/k - (1/J(nx) + 1/J(ny)) + 1/J(N) (2)

where 1/J is the digamma function, k is the number of
nearest neighbors, (nx , ny) is the number of marginal data
points in each dimension falling within the distance d, N is
the total number of data points and (·) is the average
function.

The intuition behind this estimator is, as MI aims to seek
for knowledge of X based on Y (or vice versa), it looks into
Y's neighborhood and checks if nearby values Yi result in
closely related values Xi, It means that, for a specific data
point, if its neighborhood in the (X, Y) space corresponds to
similar data, then knowing Y helps predicting X and vice
versa, implying a high MI between X and Y. This concept is
illustrated in Fig. 1, plotting taxi trips (counted by hour)
versus wind speed (averaged by hour) in NYC during two
different periods: the samples in blue are recorded when
the Sandy hurricane was approaching NYC from 29th Oct
2012 to 30th Oct 2012, the samples in red are data recorded
during normal days. As we can see, if one looks into the
blue neighborhood, one can find high values of wind
associated with abnormally low values of taxi, while the red
neighborhood records more diverse data with low wind
values associated with a wider range of taxi values. As can
be seen, the blue neighborhood shows a clearer pattern, and
as we will see, yields higher Ml.

Choosing the value of k: The KSG method requires a free
parameter k, i.e., the number of nearest neighbors to

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

•
'

20 • • ••

l
15

•
• • •

� 10

•
o.o 2.5

• •• • •
• •

•
5.0 7.5 10.0

•
•• • •

•
•

12.5 15.0 17.5
Taxi Trips (10"3)

Fig. 1: Taxi Trips vs. Wind Speed during normal days (red)
and during hurricane (blue)

be searched for each data point. A study of different MI
estimators in [41] shows that the k-nearest neighbor (kNN)
estimator is the most stable method, and is least affected by
the method-specific parameter, i.e., k. This motivates our
choice to use the kNN estimator. The study in [41] also
suggests that k ::; 8 provides a highly accurate estimation.
Note also that larger k will result in expensive computation.
In general, there is no theoretical basis for selecting an
optimal value fork. In practice, an empirical method is often
used to determine an appropriate k value. In the present
work, our empirical method is based on a tuning process to
find k, using our real data sets. Specifically, we use different
values of k, e.g., k is from 1 to 20, to compute MI and
compare the variance of MI under these different k. The
k value that gives the least variance is selected. In Section 5,
we discuss the result of this tuning process (Figure 7).

4 HIERARCHICAL LAYERED CORRELATION

SEARCH USING ADAPTIVE SLIDING WINDOWS

For real-world data, correlations might be present at dif
ferent temporal periods. We design a hierarchical layered
search algorithm based on sliding windows, and perform
the search in a top-down fashion. Each layer in the search
hierarchy works on one temporal scale, and the computation
in each layer is performed incrementally. In the following,
we provide the problem definition in Section 4.1, and de
scribe the hierarchical search architecture in Section 4.2. We
discuss the Spark parallel implementation of the algorithm
in Section 4.3. When searching for correlations, it is also
important to know when an interesting correlation has
been found, and the nature of the discovered correlation,
i.e., negative or positive. These topics will be discussed in
Section 4.4 (correlation threshold methods) and Section 4.5
(positive/negative correlations).

4.1 Using Mutual Information to Measure Correlations

in Time Series

Let X = { xt}�
1

and Y = {yt}�
1

be two finite time
series of equal length N. The joint time series between them
is (X, Y) = { (xt, Yt)}� 1 . Since X and Y are sampled in
time, they are either discrete or discretized. The frequencies
of (x, y) combinations can be computed by counting the
number of times each combination occurs in the data, and
then used to estimate MI value. Through estimating the MI
of (X, Y), we want to seek the solutions for the following
problems:

5

10

(a) Taxi Trips and Traffic Speed (b) Taxi Trips and Wind Speed

Fig. 2: Different patterns in time series

Problem 1. Determine if variables X and Y are overall
correlated, and if so, the strength of their relationship.

Problem 2. If overall correlation does not hold for X and
Y, then search for time windows Wij = [ti, tj], 1 ::; i < j ::;
N, where X and Y are highly correlated.

A positive MI value between variables X and Y over
their entire data series indicates they are correlated in gen
eral. Thus Problem 1 can be answered by computing MI for
the entire (X, Y) series. The relationship strength can be
determined using MI magnitude: the larger this magnitude,
the stronger the relationship. As an example, consider two
variables: number of taxi trips (X) and traffic speed (Y),
shown in Fig. 2a (the data are taken from NYC open data
sets [2]). We might observe that whenever the number of
taxi trips Xi is high, the traffic speed Yi is low, or vice versa,
implying a pattern that high number of taxi trips might slow
the traffic. If we ever wonder whether these two variables
have any correlations, we can take their entire time series
data and compute the Ml. If it is positive, there exists the
dependency between them.

On the other hand, consider taxi trips and wind speed in
Fig. 2b, there is not a clear pattern between these two except
for the period from Oct 29th to Oct 30th where we observe
a significant drop in taxi trips associated with extremely
high wind speed. This period is when hurricane Sandy
approached NYC causing abnormally high wind. Thus the
correlation between these two might not exist during reg
ular days, but only in extreme events. In this case, MI of
the pair (taxi trips, wind speed) might be very low during
regular days but significantly high in the time window [Oct
29th , Oct 30th]. Looking for such time windows throughout
the time series will answer Problem 2.

4.2 Layered Search with Adaptive Sliding Windows

Our goal is to efficiently search for multi-scale temporal
correlations over time series data. One possible (naive)
approach is to compute the MI for all possible temporal
periods. This approach however is computationally expen
sive because of the combinatorial explosion of possible
windows. To be more efficient, we design a hierarchical
algorithm composed of multiple layers, where each layer
is responsible for one temporal granularity. Windows at
different layers will have different sizes, while in the same
layer share the same size. At each layer, same size windows
are slided over the time series, iteratively filtering data
partitions where interesting correlations might be present.
Initially, the search starts with the coarsest granularity, i.e.,
the largest window size. Data partitions that do not contain
interesting correlations in that layer will be passed to lower
layers, to be searched with finer granularity. The advantages

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

of this multi-layer approach are: (1) multi-scale temporal
correlations can be uncovered using different window sizes,
(2) computation cost is minimized because the lower layers
only work on data filtered out by the upper layers. More
over, the computation within the same layer is performed
incrementally, thus eliminating redundant computation. In
the following, we provide the definitions used in our algo
rithm, and detail each computation step in the subsequent
sections.

Definition 1. Given two time series X = { xt}�
1 and

Y = {yt}�
1

, a time window wx,Y of (X, Y) is a sequence of
timestamped data points (xt , Yt) collected over a continuous
time interval and sorted in chronological order.

Definition 2. Window granularity is a temporal unit repre
senting the time scale of a window. For example, a window
stores data collected in hours, days, weeks, and months will
have hour, day, week, month granularities, respectively.

Definition 3. Window size is the length measured by the
number of data points contained in the window. A window
must have proper size, i.e., contain enough samples, in order
to report any significant correlations.

Definition 4. Sliding step is the moving step by which the
window will be shifted from its current time window to the
next time window.

Definition 5. Threshold a is a non-negative real number
representing the minimal level of correlation required for
significance. A window that has its correlation value � a
is said to contain significant dependency. In Section 4.4, we
propose three different ways to define this threshold, and
discuss their usage in relevant contexts.

4.2. 1 Top-down Filtering with Adaptive Window Size

We allow user to define the maximum (9max) and the
minimum (9min) granularity s/he wants to operate on the
data, as well as the sliding step by which the window will
be shifted. Starting with the largest granularity, data are
partitioned into windows of the same size. Two consecu
tive windows can be disjoint or overlapping depending on
whether significant correlation exists in one of them (details
are described in the next section). Using KSG estimator, the
MI value is computed for each window and is compared
against the threshold a. Windows that have significant
correlations (i.e., � a) are selected. After the first scan, a
set of selected windows is returned. The filtered-out windows
(called left-out data) are those that do not satisfy the defined
threshold and will be used for the next scan with finer
granularity. The search stops when the granularity reaches
the minimum, or the search procedure has scanned all data,
and all data are included in the selected windows. With this
layered top-down approach, user has the flexibility to look
for dependencies at different time scales. To test if variables
of interest are overall correlated, user can set the maximum
granularity covering the entire data series, while decreasing
the granularity to a finer scale helps uncover correlations
in separate time periods. For example, when searching for
correlations between taxi and weather data, user can start
with year granularity, then reduce the granularity to month,
week, day, and hour if significant correlations are not found.

4.2.2 Sliding Windows with Filtering

This step works at each granularity layer. At each layer,
the procedure search_windows moves windows of same size

6

along the data series and select those that satisfy the defined
correlation threshold. We illustrate this movement in Fig. 3.

·
'

I

-

"

"

. ·'- �·
I II

II I

:� .. w3·. - .,
"

"

"

Fig. 3: Sliding windows search with filtering

Consider the pair of variables (X, Y), each window Wi

is identified by the start index Si and the end index ei
(indicating the first and the last data point of wi), Since
each data point is associated with a timestamp, the start and
end index also indicate the window's start and end time.
We use the data structures left-out list and windows list to
store the left-out data and the selected windows. Let ai be the
computed MI value of Wi,

Initially, the search starts from leftmost data, and com
putes MI value for the first window w1 = [s1, e1]. Assuming
that a1 < a, then w1 does not satisfy the defined correla
tion threshold and its indices [s1, e1] are inserted into left
out list. Next, the search shifts to the right, creating the
second window w2 = [s2, e2]. The sliding step from s1 to
s2 indicates how far the window is moved whenever the
previous window does not pass the threshold test. The MI
is computed for data points belonging to w2. Suppose that
this time, a2 � a. In this case, the indices [s2, e2] are inserted
into the windows list, and at the same time, the current entry
in left-out list (i.e., [s1, e1]) is updated to [s1, s2], indicating
that only the data partition from s1 to s2 is left out. Next, the
search moves on to the third window w3 = [s3, e3] where
s3 is right after e2 of w2. The procedure repeats like this for
the rest of data series.

Fig. 4 illustrates the results after the first scan. A set of
non-overlapping windows which hold significant correla
tions is stored in the windows list, and a set of disjoint data
partitions containing left out data is stored in the left-out list.
These left out data partitions will become the inputs for the
next scan with finer granularity.

4.2.3 Boxed-Assisted Algorithm with Incremental Compu

tation

Up to this point, we have illustrated how the sliding win
dows with layered top-down approach can be applied to
search for multi-scale correlations along data series. In this
section, we describe how to compute MI value for each
window in an incremental manner.

As discussed, the KSG estimator aims to estimate MI
based on the neighborhood population. For each data point
i, it first searches for k-nearest neighbors, and then counts
the marginal points within k-nearest distance [40]. Different
methods can be used to search fork-nearest neighbors (e.g.,
k-0 tree, boxed-assisted, projection method [42]). We choose
to use the boxed-assisted method because it outperforms the
others, especially for low dimensional data [42].

Moreover, notice that the shift from w1 to w2 in Fig. 3
results in three different sets of data. Set 1 from s1 to s2
contains data points of w1 to be removed from w2, Set 2

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

Left Out
Data

: LeftOut:
Data

: LeftOut
Data

Fig. 4: Time series after the first scan

from s2 to e1 is overlapping data, and Set 3 from e1 to e2
is newly added data. To minimize the computation cost,
we design an optimized boxed-assisted algorithm to track
changes introduced by removing old data ([s1, s2]) and by
adding new data ([e1, e2]). The optimization ensures that for
each new window w2, only new data need to be computed,
and only data affected by the changes are re-evaluated.

In the standard boxed-assisted algorithm, the search
space is divided into equal size boxes. Each data point is
projected into exactly one box. Each box maintains a list
storing points belonging to that box. When searching for the
k-nearest neighbors of point i, first the box containing point
i is found, then the search starts from that reference box
and extends to its neighborhood until the k nearest points
are found. Next, the distances (in each dimension) to the
kth-neighbor are determined and the marginal points are
computed by counting the number of points fallen within
these distances. In addition to the boxed-array used in the
standard version, we use additional data structures to keep
track of the previous computation (e.g., of w1). For each data
point i, we add 3 components to its data structure to store:
(1) the index of the kth_nearest neighbor, (2) the distance in
each dimension to its kth_nearest neighbor, (3) the number
of marginal points in each dimension. To track the changes
caused by old and new data, we introduce the concepts of
influenced region and influenced marginal region for each data
point.

Definition 6. An influenced region (IR) of point i is a rectan
gular bounding box Ri = (li, ri, bi, ti), where li, ri, bi, ti are
its left-, right-, bottom-, and top-most indices, respectively.

Definition 7. The influenced marginal region(s) (IMR) of
point i is the marginal region(s) located within the nearest
distance di in each dimension.

To determine the influenced region, first the location of
point i in its corresponding box is located, Pi = (xi, Yi),
Then the bounding box is formed by expanding from Pi

to the distance di = (dx, dy) of the kth_neighbor, i.e.
(xi ± dx, Yi ± dy), The IR maintains an area where any
point j either falling into or being removed from this region
will affect point i. The potential changes in this region can
be either altering its kth_neighbor or changing its marginal
counts. In this case, point i requires a re-evaluation. Instead,
the IMR maintains an area where any point j either falling
into or being removed from it will change the marginal
counts of point i. When evaluating the newly added and
oldly removed points, the IR helps to determine when an
existing point has to be re-evaluated (both the k-nearest
neighbor and the marginal counts), and the IMR helps
to determine when an existing point has to recount its
marginalized neighbors.

7

Fig. 5 illustrates the influenced region and influenced
marginal region concepts, and explains how they can help
to minimize computational cost. Consider a data set of
seven data points p0, . . . ,p6 with their locations projected
into boxed-array as in Fig. Sa. Let p0 (in red) be the reference
point under monitoring, k = 2 be the nearest neighbor
parameter, and the maximum norm1 be the distance metric
between neighbors. Under this setting, the two nearest
neighbors of Po are p1 and P2 (in green), and its nearest
distances in each dimension are dx and dy. The nearest
distances allow the algorithm to form the marginal regions,
from which the marginal counts are computed. In this case
for point p0, the marginal counts are nx = 3 (including
P1,P2,p4), and ny = 3 (including P1,P2,p3), respectively.
The influenced region of Po is the rectangular colored in green,
and the influenced marginal regions are those with gray shade
in either dimension.

Fig. Sb illustrates how changes are introduced and man
aged. For simplicity, we only discuss cases when new points
are added into the previous computation. Changes intro
duced by removing points can be handled in similar ways.
Assuming that at time t1, a new point p7 is added to the
current window. The addition of p7 can create two different
types of changes:

- It changes the kth_nearest neighbor of Po (as in Fig. Sb).
In this case, a new nearest neighbor search for Po is required.

- It does not alter the kth_nearest neighbor, but increases
the marginal count(s) of p0. In this case, no new search is
required but only a re-evaluation of marginal count(s).

At time t2, a new point Ps arrives and falls into the y
marginal influenced region of p0, for which it will alter the
marginal count ny (but no new search is required in this
case). Similarly, a new point p9 will increase the marginal
count nx ,

(a) Illustration of IR (green) and (b) Manage changes in IR (green)
IMR (gray shade) and IMR (gray shade)

Fig. 5: Box-assisted algorithm with incremental computation

With the introduction of IR and IMR, the MI computa
tion is enhanced as follows. For each data point i, if i is:

• A new point: (Step 1.1) Follow the standard algo
rithm to compute its marginal points (Algorithm 1,
lines 8 - 10). (Step 1.2) Re-evaluate every point j
whose influenced regions contain i (Algorithm 1,
lines 14 - 22).

• A removed point: (Step 2.1) Remove point i and
its corresponding data structures (Algorithm 1, lines
11 - 13). (Step 2.2) Re-evaluate every point j whose

1. Loo: d(pi,Pj) = II Pi,Pj ll=ax = max(II Xi -Xj II, II Yi -yj II)

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

influenced regions contain i (Algorithm 1, lines
14 - 22).

• In the overlapping region of two windows, no com-
putation is required.

As the result of this incremental computation method, for
each window, only a minimum search region (containing
new points) and a minimum update region (containing
points affected by added and removed points) require
additional computation. Algorithm 1 provides the outline
of this incremental layered top-down search procedure.

Algorithm 1 Layered Top-Down Search with Adaptive Slid
ing Windows and Incremental Computation

function LayeredTopDownSearch ({X, Y})
Input: {X, Y}: pair of time series variables
Params: k: nearest neighbors parameter,

a-: correlation significance threshold,
9max : maximum granularity,
9min: minimum granularity,
slide: shifting step between windows

Output: windowsList: list of selected windows
l: initialize: 9c +-- 9max t> gc : current granularity
2: lejtOutList +-- {X, Y} t> list of left out data partitions
3: while 9c 2 9min do
4: while notEmpty(leftOutList) do
5: leftOut +-- leftOutList.next t> gets the next left out partition
6: window+-- getNextWindow(leftOut, 9c) t> gets the next

window in chronological order from the current left out partition
7: while window.endlndex :=; leftOut.endlndex do
8: for pointi in window do
9: if pointi is a new point then

10: searchKNeighbors(pointi,k)
11: updateMarginalCounts(pointi)
12: else if pointi is an old point then
13: removePoint(pointi) t> remove pointi from its

corresponding data structures
14: end if
15: affectedPoints +-- getAffectedPoints(pointi) t> gets

all points affected by pointi
16: for pointj in affectedPoints do
17: if k-neighbor changes then
18: searchKNeighbors(pointj)
19: updateMarginalCounts(pointj)
20: else if marginal counts change then
21: updateMarginalCounts(pointj)
22: end if
23: end for
24: end for
25: mi+-- computeMI(window) t> compute MI magnitude
26: if mi 2 a- then
27: windowsList.insert(window)
28: window+-- getNextWindow(leftOut, 9c)
29: else
30: window+-- shiftWindow(leftOut, 9c, slide)
31: update(LeftOutList)
32: end if
33: end while
34: end while
35: 9c +-- 9c - slide
36: end while
37: return windowsList

end function

Space complexity: The space complexity of the standard
boxed-assisted algorithm is O(n) where n is the number of
samples in a window [43]. With m additional data structures
used in the optimized version, the space complexity is
O(mn), and thus linear in the data size.

Time complexity: With the standard boxed-assisted algo
rithm, the time to compute MI for a window is O(nlog(n))
where n is the window size [43]. The sliding window

8

approach with w windows results in the complexity of
0(wn log(n)). Note that the value of w partially depends on
the correlation threshold r,. With the incremental computa
tion, however, it only requires to have computation on new
data points and updates on affected points. For example, if
the data are sparse, i.e, few overlapping points are affected
through insertions of new and removal of old points, the
time complexity will be much smaller.

4.3 Data Partitioning and Recursive Parallelism using

Apache Spark

We exploit the distributed computational capability of the
Apache Spark to address the scalability requirement and
accelerate the search process. Using the divide-and-conquer
strategy, we divide the time series into multiple overlapping
data partitions. Each partition is distributed and analyzed
on a separate worker node of the Spark cluster. The over
lapping data ensures the analysis is contiguous between
partitions and is equal to the maximum size of a window.
In order to leverage Spark platform for task parallelism, we
design a recursive parallel algorithm that work recursively
on the partitions. The algorithm is composed of two phases:
the Map phase and the Reduce phase. In the Map phase, each
data partition is mapped to a worker node where the top
down search procedure will be executed to search for sig
nificant correlations on that partition. The results returned
from this phase include a set of selected windows, and a set of
left-out data. The Reduce phase collects these results and does
three things: (1) First, it stores the list of selected windows to
the result collection; (2) Next, it aggregates the left-out data
from all worker nodes, and recursively invokes the Map
phase to re-distribute the collected left-out data to worker
nodes where new search process will start. This recursive
procedure stops when either the left-out data returned from
all worker nodes are empty, or the granularity reaches the
minimum; (3) And finally, it performs a post processing step,
sorting the extracted windows in increasing order of the
start index and decreasing order of window length in order
to merge overlapping windows and ensure bigger windows
will be reported.

The recursive parallel algorithm is implemented in
Python using the PySpark interface of the Spark platform.
The layered top-down search algorithm, however, is im
plemented in C++ for better performance. Since the search
algorithm involves k-nearest neighbor search which is of
ten computationally expensive, C++ is a good candidate
to perform this search. To communicate between the two
programs, we use Spark's pipe() command.

Algorithm 2 illustrates this recursive parallel procedure.
In lines 1-2, data indices are partitioned into overlapping
partitions. Each partition contains n windows and two
consecutive partitions are overlapped by a window of gran
ularity 9max· Lines 4-13 define the map and reduce phases
of the recursive parallel search. The external C ++ program
performing layered top-down search on each data partition
is invoked in lines 14-16.

We prove the correctness of the data partitioning strategy
and the parallel algorithm using Lemma 1 as follows.

Lemma 1. Let (X, Y) be a pair of time series of length N, and w
be any window of granularity g. Suppose (X, Y) is divided into

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes. permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

Algorithm 2 Recursive Parallel Top-Down Search
function RecursiveParallelSearch ({ X, Y})
Input: {X, Y}: pair of time series variables
Params: k: nearest neighbors parameter,

size: window size at granularity 9rnax,
n: number of windows in each partition,
N: total number of samples

1: sc f- SparkContext(conf=SparkConf()); t> initialize SparkContext
2: dataRdd +- sc.parallelize([(i-size,i+n*size) for i

3:

in xrange(O,N,n*size)]); t> divide time series into
overlapping partitions.

4: def Mapper(dataRdd):
5: (windows,leftOut) f- dataRdd.map(computeMl).cache(); t>

map each data partition to a worker node, and invoke computeMI
function to search for window-based correlation

6:
7: def Reducer(windows, leftOut):
8: selected Windows f- selectedWindows.union(windows) t>

union selected windows from all worker nodes
9: selected Windows.saveAsTextFile('hdfs:/ /') t> store the

selected windows into the result collection
10: leftOutData +- leftOut.aggregate(([],O),

(lambda ace, value: (acc[O].union(value), acc[l] + 1),
(lambda accl, acc2: (accl[O].union(acc2[0]), accl[l] +

acc2[1])))) t> aggregate leftout data from all worker nodes
11: if(leftOutData[l] > 0 AND 9c :2: 9rnin):
12: Mapper(leftOutData) t> recursively invoke the map phase

to re-distribute leftout data
13: postProcessing(selected Windows)

overlapping windows

14: def computeMI(partitionRdd):

t> sorting and merging

15: (windows,leftOut) f- partitionRdd.pipe(topDownSearch) t>
invoke top-down search procedure in C++ on each data partition

16: return (windows,leftOut)

p partitions which are pairwise overlapped by a window of gran
ularity 9max· Then the window w is reported if! I(Xw , Yw) � er
I\� w

'
of granularity g

'
: w C w

'
I\ I(Xw' , Yw') � er I\ 9min �

g � 9
1

� 9max·

Proof We will prove that Lemma 1 holds for Algorithm 1
that runs sequentially on a single node, and for Algorithm
2 that runs on multiple overlapping data partitions in a dis
tributed environment, and thus, the correctness is preserved
by both algorithms.
o If p = l: (X, Y) has only one partition. On (X, Y),
Algorithm 1 performs a breadth-first search on all intervals
with the defined granularities, starting from the coarsest
granularity 9max· Thus, w will be reported for the coarsest
(topmost) granularity where I(Xw , Yw) � er holds. Because
(X, Y) has only one partition, Algorithm 2 launches and
applies Algorithm 1 to the entire partition, and thus, reports
the same results.
o If p = 2: (X, Y) is divided into two partitions (p1,P2)
overlapped by a window w0 of granularity 9max· Let W1, w2
be any windows in partitions p1 and p2, respectively, that
fall into the overlapping region w0• Then:

- Case a. If W1 = w2 = wa:
* If I(Xw

0 , YwJ � er, then W1 and W2 are both
reported respectively for p1 and p2. The post processing
step at the end of the search will merge the two windows
into one. On partition p2, the search moves on with the next
window right after w2, and continues on the rest of p2 as on
the whole of (X, Y).

9

* If I(Xw0 , YwJ < er, then neither W1 nor w2 is
reported. The search moves on with partition p2 where the
next window is shifted from w2 by a shifting step slide.

In both cases, nothing is lost at the overlapping region.
Thus, the search is contiguous on p partitions as on (X, Y).

- Case b. If w1 C w2 <;: Wo:
* If I(Xw, , Yw,) � er, then :3w; E P2 : W1 <;: w; <;: W2

I\ I(X , , Y ,) � er. The windows w1, w; are both reported
W2 W2

on partitions p1 and p2, respectively. The post processing
step will merge the two windows at the final stage of
Algorithm 2. The search continues on the remaining data
of P2 as on the whole of (X, Y).

* If I(Xw, , Yw,) < er, then either the search finds
nothing at the overlapping region if �w; E p2 : w; <;: w2 I\
I(Xw' , Yw') � er, or it will report w; if I(Xw' , Yw') � er,
and the se�rch continues with the remaining data �f p2 as
on the whole of (X, Y).

- Case c. If w2 C w1 <;: w0: this case will not happen
because on p2, the search will always start with a window
of 9max· Thus, it will always be either Case a or Case b.
o If p > 2: every two consecutive partitions in p will
be handled similarly to the case of p = 2. Thus, w will
be always reported if Iw is above the threshold, and no
windows are lost at the overlapping region. D

In summary, Lemma 1 shows that the data partitioning
strategy guarantees the results are preserved in the overlap
ping region, and the search is contiguous on p partitions as
on the whole of (X, Y).

4.4 Setting the Correlation Threshold

When searching for correlations in sliding windows, it is
important to have criteria that can justify the strength of
an association, as a weak association might not be in the
interest of users. The magnitude of mutual information
represents how strong the correlation is (the larger the MI,
the stronger the correlation), and thus can be used to mea
sure correlation strength. As MI magnitude represents how
much uncertainty is reduced between variables, expressing
in relation with the entropies, we get:

I(X, Y) = H(X) + H(Y) - H(X, Y) (3)
From Eq. 3, I(X, Y) is the difference between the sum
of the marginal entropies (representing the uncertainty/
randomness of the individual variables) H(X) and H(Y),
and their joint entropy H(X, Y). Since the joint entropy
H(X, Y) is at least as large as each marginal entropy, i.e.,
H(X, Y) � max(H(X), H(Y)), the MI I(X, Y) is bounded
by: O � I(X, Y) � min(H(X), H(Y)) (4)
Eq. 4 shows that while Mi's lower bound is 0, its upper
bound varies with the marginal entropies, and can grow
unbounded depending on the data size and the underly
ing data distribution. Thus when data characteristics and
their relationships are unknown, it is challenging to set an
appropriate threshold to uncover interesting correlations.
Having methods to assist users in setting the threshold is
necessary, and more importantly, these methods have to
provide a quantitative basis that can enable comparison
between different correlations. In the following sections, we
propose three different approaches to define the threshold
er, and discuss the advantages and disadvantages regarding
their usage.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

4.4. 1 Absolute Ml Magnitude using Data Coverage

In this naive approach, the threshold a is defined using an
absolute real value of MI. The higher this value, the stronger
the relationship.
Definition 8. A window wx,Y is said to contain significant
correlation if its MI value (aw) is greater than or equal to a
predefined real number a representing an MI magnitude.

The value of a decides how many windows will show
up in the results. Clearly, a larger value of a results in fewer
windows. We propose to use data coverage as a basis to
determine the threshold a:

D C
#samples_in_selected_windows

ata overage = (5)
#total_samples

Data coverage represents the amount of data covered in
selected windows, and can be interpreted as the percent
age of interesting data over the entire series. For example,
consider the pair of time series {X, Y} with size N = 500,
and assume that the selected windows returned by AMIC
contain 100 samples in total. This results in the coverage:
100/500 = 0.2, accounting for 20% of data. A coverage
of 20% implies that significant correlations are expected to
reside within 20% of the entire data series. Using data cov
erage, users will tune the a value so that returned windows
provide a desired coverage. Since this approach uses a real
value of MI magnitude to assess correlation in a window, it
can reveal the real strength of a relationship. However, it is
a trial-and-error approach because data coverage will require
a tuning step in order to find an appropriate value for a.
Thus, in practice this approach is difficult to use if no prior
knowledge of the considered data is available.
4.4.2 Two-Step Filtering using Normalized Entropy and

Normalized Mutual Information

Alternatively, we propose a two-step filtering approach to
select a window based on normalized entropy and normalized
mutual information. Normalization scales unbounded real
values to a range of relative values, in this case is [O, 1],
and thus has the advantage of providing comparative and
bounded values when setting a correlation threshold.

Consider a window wx,Y = {(xi, Y1), ... , (xn , Yn)} of n
samples obtained from a pair of time series variables (X, Y).
The entropy of window w is:

Hw = - I:yEYw I:xEXw p(x, y)log(x, y) (6)
= H(X

w) + H(Yw) - I(Xw , Yw) (7)
Window w can obtain a maximum entropy when X and
Y are uniformly distributed on [Xw x Yw], as uniform
distribution provides the largest uncertainty (or equiva
lently, the least information) over discrete variables [44]. The
maximum entropy of window w is:

max(Hw) = log(n) (8)
where n is the window size. In turn, its normalized entropy
is: - Hw Hw 0 < Hw = = -- < l (9) - max(Hw) log(n) -
The window entropy refers to the amount of uncertainty
contained in the window, thus when its normalized entropy
scales to 0, the considered data has no degr�e of randomness
(i.e., is deterministic). In contrast, when H

w
= l, the win

dow attains the maximum degree of uncertainty (i.e., data
are uniformly distributed). In order to report any meaning
ful correlations, data in the window have to contain enough

10
randomness (Hw > 0) to avoid the deterministic situation.
Using the concepts of max entropy and normalized entropy,
the window's MI can be normalized in two distinct ways.
A. Mutual Information Normalized by Max Entropy: In this
approach, maximum entropy of the window is used to
normalize its mutual information:

0 < J(l) = lw = � < l (10) - w max(Hw) log(n) -
By dividing the window's MI by its maximum uncertainty,
J�l) represents the minimum proportion of information that
can be obtained between two variables of interest. Under
this approach, windows that have the same size are compa
rable, and the one which has the larger Jg) is preferable.
B. Mutual Information Normalized by the Window Entropy: In
this approach, the window entropy is used to normalize its
mutual information:

0 < JC2) = � < 1 (11) - w Hw
-

By dividing the window's MI by its own entropy, J�2
) rep

resents the actual reduction of uncertainty of the window.
The larger n2l is, the more information is shared between
the window's variables, and thus more preferable.
C. Two-step filtering procedure for window selection: Let a H and
CJJ be the thresholds of normalized entropy and normalized
Ml, respectively.
Definition 9. A window wx,Y is said t'? contain significant
correlation if its normalized entropy (Hw) and normalized
MI (iw) are greater than or equal to the defined thresholds
a H and a I, respectively.

Finally, the two-step filtering procedure for selecting a
window is proposed as follows. For each window wx,Y:

• Step 1: Select window wx,Y if Hw � CJH
• Step 2: Select window wx,Y returned from Step 1 if

jCll > a or J(2) > a w _ J w _ J

D. Discussions Since Jgl and n2l represent two differ
ent amounts of shared information, their usage will differ
depending on the considered contexts. While Jg) allows
windows of the same size to be comparable, it cannot
compare windows of different sizes. Indeed, Jg) gives more
preference on small windows over big windows. Thus, the
use of Jg) is appropriate in contexts where users prefer
small size windows over big ones. Note that small windows
often represent intensive correlated periods. On the other
hand, Ji2l represents actual shared information, allowing
users to compare windows of different sizes. It is suitable for
scenarios where windows are preferred to be ranked based
on their shared information. We illustrate the usage of Jg)
and Jf;l in the following example.

Consider Fig. 6, plotting the time series between the
Wind Speed and the Taxi Trips during a storm event. The
event started at the beginning of 28th Mar, and ended on
31st Mar 2011. Let w1 and w2 be two extracted windows.
Since Jg) places preference on small windows, it is likely
to rank w1 as more interesting than w2 (Jg} > J�1h, Notice
that in this case, w1 represents a more intensively correlated
period between the two variables. In contrast, J�2

) is likely
to rank w2 as more interesting than w1 (J;;; < J�2

}), thus
capturing the entire storm event from its start to its end.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

-Taxi

- Wind Speed

Fig. 6: Illustrate J2) and Jfn2l usage
4.5 Positive and Negative Correlation

The AMIC framework relies on MI to identify temporal
correlations between variables, and the extracted windows
are the time periods where correlations exist. However, a
positive MI only guarantees the presence of correlation, but
does not reveal whether the correlation is positive or neg
ative. Distinguishing positive and negative correlation helps
understand the nature of the dependency, as a positive cor
relation means one variable enhances another variable, and
a negative correlation means one variable inhibits the other.
For example, a positive correlation between the Taxi Trips
and the Number of Collisions indicates that the increasing (or
decreasing) of taxi trips is associated to the increasing (or
decreasing) of the number of collisions. A negative correla
tion between the Taxi Trips and the Wind Speed indicates that
the decreasing (or increasing) of taxi trips is associated to
the increasing (or decreasing) of the wind speed. We define
the following method to determine whether the variables in
extracted windows are positively or negatively correlated.

Consider the window w x, y = {p1, ... , Pn } extracted
from AMIC. Since wx,Y satisfies the defined threshold,
it contains a statistically significant correlation. Let Pi =
(xi, Yi) and Pi+l = (xi+i, Yi+i) be two consecutive data
points of wx,Y measured at times ti and ti+l· We say that
X and Y are positively associated during the period [ti, ti+il
if one of the following holds:

• Xi < Xi+l and Yi < Yi+l
• Xi > Xi+l and Yi > Yi+l

In other words, during the period [ti, ti+i], the values of
X and Y both increase, or decrease, together. Similarly, we
say that X and Y are negatively associated during the period
[ti, ti+1] if the value of one variable increases and the value
of the other variable decreases:

• Xi < Xi+l and Yi > Yi+l
• Xi > Xi+l and Yi < Yi+l

Definition 10. Positive temporal period (#PPw) of the window
wx,Y is the number of periods [ti, ti+i] where X and Y are
positively associated.
Definition 11. Negative temporal period (#NPw) of the window
wx,Y is the number of periods [ti, ti+i] where X and Y are
negatively associated.
Definition 12. The degree of positive/negative association be
tween X and Y in the window w x y is defined as:

#PPw -#NPw -l"5cµw
=

lwl-l "5cl (12)
where lwl is the number of data points in wx,Y· Using µw ,
we define the nature of correlation between X and Y as
follows. Let wx,Y be the window extracted from AMIC.

11

Positive correlation: The correlation between two variables
X and Yin the window wx,Y is positive if they are positively
associated in wx,Y, i.e., 0 < µw "5c l. The positive correlation
becomes stronger as µw gets closer to 1.

Negative correlation: The correlation between two vari
ables X and Y in the window wx,Y is negative if they are
negatively associated in wx,Y, i.e., -1 "5c µw < 0. The negative
correlation becomes stronger as µw gets closer to -1.

Neither positive nor negative correlation: The correlation
between two variables X and Y in the window wx,Y is
neither positive nor negative if their µw = 0. This type of
correlation occurs in non-linear dependencies, for example,
when the relation between X and Y follows non-linear
functions such as square or cube.

Note that the case in which correlation is neither positive
nor negative is highly sensitive to noise. For example, the
presence of even a few noisy samples in the data would
alter the value of µw from µw = 0 to µw =/- 0. In this case, a
confidence level can be used to assert the significance of the
association:

C
p

= II #PPw -#NPw II (13) #PPw

Cn = II #PPw -#NPw II (14) #NPw

Co = 1- II µw II (15)

where C
p
, Cn , and c0 are the confidence level of positive,

negative, and neither positive nor negative correlations, re
spectively.

5 EXPERIMENTAL EVALUATION

We evaluate the scalability and effectiveness of AMIC us
ing both synthetic and real-world data sets. The generated
synthetic data sets contain different types of dependencies
(e.g., linear vs. non-linear). The two real-world data sets
are obtained from the NYC Open Data Portal [2] and from
an energy trading company2 in Denmark. The effectiveness
evaluation aims to assess the interesting and/ or useful level
of extracted windows. The scalability evaluation asserts the
performance and robustness of AMIC. In the following dis
cussion, we describe our infrastructure, data, experiments
and findings.

5.1 Infrastructure

The synthetic and the NYC data sets are evaluated using
the infrastructure and data facility at the Center of Urban
Science and Progress, New York University [45]. Our infras
tructure includes a 1200-core cluster running Cloudera Data
Hub 5.4 and Apache Spark 1.6. The cluster consists of 20
high-end nodes, each with 64 cores, 256GB of RAM, and
24TB of storage. With the energy data sets, due to the NDA
signed with the company, we perform the analysis on our
local server at Aalborg University [46]. The server has 2.7
GHz processor, 8 GB of RAM, and 250 GB of storage.

2. Due to the Non Disclosure Agreement (NOA) with the company,
we do not disclose the company name and its data sets.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

·"�. '·" i O,J
j10.2s
.f 0,2

°'; 0,15

i /�:

Fig. 7: Mutual Information with different k
5.2 Parameters Setting

- Value of k: We use k ranging from 1 to 20 to compute MIfor the variables extracted from the real data sets. The MI values produced by different k are compared together. We found that k between 1 and 4 produces high variance of MI value, while the MI becomes more stable with k from 5 to 10. The value k = 6 gives the most stable result, thus, is selected to be used in AMIC. The tuning process is illustrated in Fig. 7, which shows that starting from k = 6, the MI is converged to a similar value. - Threshold a: This parameter is closely related to the natureof the data. For those that are naturally correlated such asthe synthetic data sets (generated with known relations), thedesired relationships can be found even with high a. Forreal-world data sets where noise is present and correlationscan be rare, a lower a value is helpful to uncover infrequentcorrelations. We will discuss the value of this parameterwhen analyzing each specific set of data. - Max granularity: When applying AMIC to real-world timeseries, we set the granularity to year, covering the entiredata series in order to test the overall correlation. To search for time windows, we start with the month granularity, then split into week, day, then hour. The reduction of the granularity will also depend on the amount of left out data returned from the preceding search.
5.3 Synthetic and Real-World Data Sets

The synthetic data sets: We generate synthetic data setscontaining multiple types of known relations, shown in Fig.8. They include both linear and non-linear dependencies, aswell as monotonic and non-monotonic functions. These arestandard relations often used to evaluate correlation methods [38], [47]. Figs. 8a and Sb illustrate two independentvariables where we add 10% outliers (following a lineardependency) to the latter. Figs. Sc and 8d demonstrate linear relationships, with 10% outliers (uniformly distributed)added to the latter. Figs. Se, Sf, 8g, Sh, Si, and 8j represent theexponential, the quadratic, the diamond, the circle, the sineand the cross functions, respectively. We provide the detailof synthetic data sets generation in Appendix A
The NYC Open Data [2]: This source has more than1,500 spatio-temporal data sets providing a wide range ofinformation about New York City: from its infrastructuresand resources (e.g., water, energy) to its environment andcitizens (e.g., employment, education, mobility). Exploringthese data sets can unveil invaluable insights about the cityand the life of its citizens. For evaluation purpose, we testAMIC on two collections of data: the transportation-relatedand the weather-related data sets [35].
The Energy Data Sets: The data are obtained from anenergy trading company in Denmark. The data sets provideinformation of energy produced by different sources such aswind turbines, solar panels and power plants. The data are sampled in minute intervals, and is recorded at production

MI = 0
1
i(2J = 0

(a) Independence
MI = 2.81, il>J = 0.48

V
(c) Linear

MI = 2.39, il>J = 0.39

=u;
- .
...

;, - ..

·� • • ' � H

(e) Exponential

MI = O. 79, i(2l = 0.11

.LQ_ '
, . . . ' . .

(g) Diamond

MI = 1.3, il21 = 0.18

·:MA
::r \ ;; \

:: \ I '
', ' > ' ' • 0 ' > 0 M

12

Ml = o. ii') = 0

(b) Independence with outliers
Ml = 2.69, ii') = 0.44

:1 /'4
�
•, ' . ' ... ' .. "

(d) Linear with outliers
MI = 2.29, il>J = 0.36

u
(f) Quadratic

MI = 1. 76, ii>) = 0.23

lQ
(h) Circle

Ml = 1.34, ii') = 0.2

:��� '/ '. ...
•., , . ' ' ' ..

(i) Sine G) Cross Fig. 8: Evaluation on synthetic data sets
unit unit, specting

level, such as i.e., the energy entire power aggregated plant for or an wind entire turbine. productionRethe NDA
 s, signed but will with the discuss company, correlation we do findingsnotdisclose obtained the from data them.set

5.4 Data Cleaning and Preprocessing

On real-world data sets, we first perform data cleaningby removing duplicated entries and interpolating missingvalues using linear interpolation [48]. Once the data arecleaned, the preprocessing process is performed to transform raw data into variables of interest, using availablemeta-data associated with each data set. To deal with largedata volumes, the preprocessing process is performed onour Spark cluster. It took approximately 45 minutes toprocess the taxi data set, and less than 10 minutes to processeach of the other data sets. From the selected NYC Open Data Sets [35] and theenergy data sets, we extract the variables of interests considering multiple time resolutions (D: Day, H: Hour, 15M: 15Minutes, lM: 1 Minute). These variables will be the inputs of AMIC to test the method's effectiveness on real-world data.
5.5 Evaluation of Synthetic Data Sets

The synthetic data sets are used to evaluate the correctnessand scalability of the AMIC method, as the known relationsprovide the ground truth, enabling us to correctly verifywhether AMIC can identify the defined relationships. Theevaluation is done both separately for each relation andtogether for multiple relations. Fig. 8 demonstrates the separate evaluation on each relation. The MI magnitude

Copyright (c) 20 I 9 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

and the normalized MI value J(2) are computed for each
of them, shown in the corresponding figures (Fig. 8). As can
be seen, their MI magnitudes are significantly larger than 0,
indicating that there is dependency among generated data.
Specifically, linear relations obtain the highest MI value
(MI > 2), with a reduction in uncertainty (](2)) up to
nearly 50%. The non-linear functional relations (exponential
and quadratic) obtain the second largest MI values and
uncertainty reduction(> 30%). Finally, the non-linear non
functional relations (diamond, circle, sine, and cross) have
the smallest MI values and percentages of uncertainty re
duction (> 10%). Notably, comparing the MI magnitudes
in Figs. 8c and 8d shows that the added outliers have
weakened the linear relationship, and this phenomenon is
visible and is detected using AMIC.

To evaluate multiple relations, we combine them into
the same data series, following a predefined order. Random
noise (i.e., independent data) is added between two different
relations to separate them. We apply AMIC to the data in
order to search for windows of embodied relationships.
Fig. 9 illustrates a combination of four relations: Cross,
Diamond, Sine and Quadratic, with data of independent
variables added in between. As can be seen, our method is
able to separate each relation, returning four distinct
windows together with their indices and corresponding MI
values. With synthetic data sets, since we already know the
data characteristics, we use the absolute MI magnitude with
data coverage method (Section 4.4.1) to set the MI threshold.

W1:(S00 999) Cross, Ml:1.32

W2: (1500 1999) Diamond, Ml=O.n

W3: (2500 2999) Sine, Ml:1.34

W4: (3500 3999] Ouadrallc, Ml=2.27

,I

·.: "/ , o

t(Hme)

Fig. 9: Evaluation of multiple relations: Cross, Diamond,
Sine and Quadratic

5.6 Evaluation of Real-World Data Sets

When dealing with real-world data sets, since we do not
know the data characteristics in advance, we use the two
step filtering method in Section 4.4.2 to define the cor
relation threshold. Moreover, since we are interested in
comparing and ranking windows of different sizes, we use
the window's entropy to normalize its mutual information
(](2l). In general, we set a-H = o-r = 0.2, selecting window
that contains at least 20% of randomness with respect to
its max entropy and has mutual information which helps
reduce at least 20% of uncertainty.

A. The NYC Open Data Sets. We apply AMIC to each
pair of extracted variables. The findings are summarized in
the following discussion, with only a few extracted win
dows plotted due to space limitation. When discussing the
results, we generally compare them to those reported in
[19], which uses the same data sets as ours, and applies a
topology-based approach to represent and identify relation
ships among the data sets.

Weather and Taxi: The findings listed here come from
variables extracted from Weather and Taxi data sets.

13

TABLE 1: Top ranked windows between Taxi Trips and
Wind Speed

From To MI Event

2012-0ct-29 2012-Nov-02 0,651174 Sandy Hurricane

2012-Jul-27 2012-Jul-28 0,604444 Tornado hits NYC

2012-Jan-20 2012-Jan-21 0,578166 Snow storm

2013-Jun-07 2013-Jun-10 0.542931 Tropical Storm Andrea

2012-Nov-10 2012-Nov-11 0,542242 Snow storm

2012-Dec-23 2012-Dec-24 0,493842 Storm

2012-Nov-06 2012-Nov-07 0,487898 Snow storm

2012-Sep-08 2012-Sep-09 0,424399 Tornado

2012-Sep-19 2012-Sep-20 0,420836 Storm

2011-Aug-26 2011-Aug-31 0,4124 Irene Hurricane

2011-0ct-29 2011-0ct-31 0,40616 Snow storm

Taxi Trips and Wind Speed: We examine the correlation
between taxi trips and wind speed variables, in both one
hour and 15 mins resolutions. We found a strong negative
relationship between them in both resolutions. When the
wind speed readings were exceptionally high, major drops
in taxi trips occurred (e.g. Fig. 10). Our finding is similar to
the result reported in [19], indicating a negative relationship
between the taxi trips and the average wind speed.

Fig. 10: Taxi Trips vs. Wind Speed
Moreover, as we observe that the correlation often oc

curred at times when the wind speed had abnormal val
ues, we hypothesize that the discovered relationship might
only appear in extreme events. To test this hypothesis, we
asked AMIC to rank all extracted windows by their MI
magnitudes, and select the top-k windows. As expected,
many of these top windows are associated with extreme
weather events that had happened in NYC. Table 1 reports
some of these events, for which we found their information
through archived news feeds. This demonstrates a strength
of AMIC which is not mirrored by the current state of
the art. Specifically, the ability of AMIC to automatically
rank extracted time windows based on their correlation
significance has strengthened the data exploration process,
and provided users the ability to not only compare different
correlations in terms of their strength and significance, but
also to determine the exact time periods where the correla
tions happen. Thus, users are able to make further steps to
understand the nature of discovered correlations.

Taxi Trips and Rain Precipitation: We examine the rela
tionship between the number of taxi trips and average rain
precipitation. We found that the two variables are not cor
related overall, but only in certain time windows. In the
extracted windows, we found a negative relation between
these two variables. An example is given in Fig. 11. The
two highlighted windows show a drop in the taxi trips
associated with abnormally high rain. To better explain

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

Fig. 11: Taxi Trips vs. Rain Precipitation

the extracted windows, we examine their data. The first
window lasts for two days, from 29th Oct 2012 to 30th Oct
2012, the period when hurricane Sandy approached NYC.
In the second window, however, the drop of the taxi trips
happened at midnight. Note that taxi trips have a daily
pattern, showing a high number of trips during rush hours
(7 AM-9AM, 1PM-3PM, 6PM-8PM) and a low number of
trips in non-rush hours, especially at midnight. Thus, the
low taxi trips in second window might also be caused by the
lack of taxi demand at midnight. In this case, the correlation
in second window can be coincidental.

Moreover, it should also be noted that there is a short
period on the far left of Fig. 11, where an abnormally high
rainfall is also linked with a drop in taxi trips. This window,
however, is not shown in our search results. We found that
the abnormal increase in precipitation occurred in a very
short time period. Only 7 data samples were reported in
this period, thus the window's entropy is lower than the
threshold O-H, and is not selected by AMIC (Section 4.4.2).

The findings in [19] report a strong negative relation
ship between the two variables considered here: When
rain precipitation is high, the number of taxi trips is low,
implying the difficulty to find a taxi in rainy days. Using
AMIC, we extend further this result. We found that not
only are the two variables negatively correlated in certain
time windows, but also the correlations mainly occur during
extreme weather events, such as during a hurricane. This
allows users to make further investigation, for example, to
combine multiple factors such as wind speed and rainfall,
and come up with a better explanation for the cause of taxi
trips dropping.

Taxi Fare and Rain Precipitation: A finding in [19] reports
a positive relationship between Taxi Fare and Rain Precipi
tation, suggesting that taxi drivers increase earnings when
it rains. In our findings, we also confirmed this positive
correlation, as an example in Fig. 12a where the highlighted
window shows a positive association between high rainfall
and a slight increase of taxi fare. More importantly, we
found that this positive correlation is visible only in hour res
olution, but disappears in day resolution. This phenomena
can be explained due to the fact that taxi drivers are target
earners: taxi drivers have a daily income target, and reach
their targets sooner when it rains, after which they quit
driving for the remaining of the day, thus, maintain their
overall income under day resolution. Additionally, AMIC
shows that the positive correlation between taxi fare and
precipitation only occurs during normal rainfall, whereas
during extreme events such as during a hurricane, a neg
ative correlation is observed instead. This counterexample
is shown in Fig. 12b, where taxi fare and precipitation are

] woo W'VV'\.'V.\,v\,tl'-,'''-""1/VV'�V\,

• =

(a) During normal days (b) During hurricane

Fig. 12: Taxi Fare vs. Rain Precipitation

14

Fig. 13: Daily Patterns of Taxi Fare and Traffic Speed

negatively correlated during the hurricane Sandy. This may
be because of a shutdown in the city due to the hurricane.

Taxi Trips and Visibility: We found a positive correlation
between the number of taxi trips and visibility. During periods
when the visibility is low, a decrease in taxi trips occurs. This
may be due to the increased danger of driving under such
a condition. In addition, our findings also show that this
phenomenon happens mostly at midnight, which suggests
that beside visibility, other factors such as the decrease in
taxi demand, might also play a role in causing a drop in taxi
trips.

Taxi and Traffic Speed: We analyze variables extracted
from the Taxi and Traffic Speed data sets. When applying
AMIC to the yearly data of the pair (Taxi Trips, Traffic Speed),
we found a strong negative correlation with a significantly
high MI magnitude. We then split the data into monthly,
weekly and daily patterns, and apply AMIC to them. We
also obtain high MI values. This suggests that taxi trips and
traffic speed are overall correlated.

We examine another relationship, Taxi Fare and Traffic
Speed, in hour resolution. We obtain a relatively high MI
for the entire data series, implying an overall correlation
between taxi fare and traffic speed. Particularly, when we
split the yearly data into a daily pattern, we gain even
higher MI values, implying the correlation is stronger in
daily pattern. Fig. 13 shows this daily pattern, where the
traffic speed and the taxi fare were both low and high at
similar times. This suggests that taxi drivers are likely to
earn less with slow traffic.

We analyze the pair (Taxi Fare, Trip Duration), and found
a slightly weak positive correlation between them. The
correlation suggests that the taxi driver is likely to earn more
when the trip duration is longer. Note that trip duration
gets longer either because of traffic jam (the fare does not
increase) or because the travel distance is long (the fare does
increase). If traffic jam is the cause of long trip duration,
linking trip duration to taxi fare is not enough, and thus
explains the weak correlation between the two variables. This
might suggest that other variables, such as travel distance or
traffic speed, can be of interest in analyzing together with taxi
fare. Moreover, we also found that the correlation between

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes. permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

Fig. 14: Rainfall vs. Motorists Killed

taxi fare and trip duration in day resolution is stronger than in
hour resolution. This can be because long trip duration often
lasts longer than an hour, thus the association between high
taxi fare and long trip duration (and vice versa) is more visible
under day resolution.

Collisions and Weather: We analyze the Collisions and
Weather data sets. One of the findings in [19] reports a strong
positive relationship between the rainfall and the number
of motorists killed. However, AMIC does not confirm this
relationship. The MI value between this pair of variables is
almost zero, and no significant windows are extracted from
the data series, even with a low threshold o-r, across all
resolutions. Fig. 14 shows a part of the time series between
the two variables (in day resolution), where no associated
patterns can be seen in the figure: high (or low) rainfall
seems to have no effects on the number of motorists killed.

Similarly, AMIC does not confirm the strong positive
relationship between the rainfall and the number of injured
pedestrians, as reported in [19]. We instead observe random
patterns between the time series of these two variables.

Collisions and Taxi: We study variables extracted from
the Collisions and the Taxi data sets. In [19], a strong positive
relationship between the Taxi Trips and the Number of Colli
sions is suggested in its findings. However, our findings are
slightly different. We found that overall, the two variables
are not correlated, except certain periods during the week
displayed a weak positive association. Fig. 15 shows an
example of the extracted windows. The highlighted window
shows a time period where a high number of taxi trips is
associated with a high number of collisions. Intuitively, one
can argue that there can be a causal relation between taxi
trips and collisions: a high number of taxi trips leads to
a high number of collisions. This pattern is visible in the
extracted windows from AMIC. However, there are also
counter examples (can be seen in Fig. 15), where a high
number of taxi trips are also associated with a fluctuation
in the number of collisions. This result could suggest that,
although there is a positive correlation between taxi trips and
number of collisions in the extracted windows, there might
be other hidden variables that can be the main causes of
the increase in collisions and that happens during periods
when the number of taxi trips is high. This result opens
new opportunities for users to look deeper and further
investigate their data sets.

Collisions and 311 Complaints: We examine the rela
tionships between the Collisions and the 311 Complaints data
sets. The 311 Complaints data set records complaints made
by NYC citizens through the 311 phone number.

A finding in [19] suggests that there is a strong posi
tive relationship between the Number of Collisions and the
Number of 311 Complaints. However, AMIC does not confirm
this strong correlation. Similar to the case of Taxi and Colli
sions data sets, AMIC found that the numbers of collisions

fn 30
'

�20

·a
� 10

§ 40

�30

320

10

o.L.-<U.......--,..>e.-"-'-��--.-'-L..-,C�.,-,

101.1-\1·��'1.1_\'l·�'l.1-\1·�1.1-\l��1.1-\l·�1.1-\1·��\l-'l.1·��'1.1-'l.1·�'1.1_'\.'l·09

Fig. 15: Taxi Trips vs. Collisions

15

and 311 complaints are not correlated overall, but a weak
positive correlation is found in the extracted windows. This
might suggest the presence of hidden variables in the pe
riods where these two are weakly correlated. Additionally,
our findings suggest that the number of complaints made by
311 calls has a daily periodic pattern, where the complaints
are significantly higher at late night, and low at other time
periods. This could be a consequence of the NewYorkers'
lifestyle pattern, for example, noise tends to increase during
late night.

B. The Energy Data Sets. We analyze the extracted vari
ables from the energy data sets. We found a strong positive
correlation between the amount of produced energy and the
source that generates it. For example, when solar panel is the
energy source, a strong positive correlation between Energy
Production and Solar Irradiation is found, in both horizontal
and tilted directions (i.e., the Horizontal Irradiance and the
Tilted Irradiance). Whenever the solar irradiation is high, the
generated energy increases, and vice versa. As solar panels
rely on solar cycle to generate energy, this strong correlation
holds for the entire data series of the considered variables.

Similar findings are also obtained when wind turbine is
the energy source. A strong positive dependency between
Wind Speed (as well as Wind Speed EastWest and Wind Speed
NorthSouth) and Energy Production is suggested by AMIC.
Additionally, we found that Wind Speed, Wind Speed East West
and Wind Speed NorthSouth all have a relatively similar
degree of correlation strength with Energy Production. We
obtained](2) :::::: 0.3, i.e., approximately 30% uncertainty
is reduced between Energy Production and the other three
variables.

When solar is the energy source, we found a negative
correlation between Energy Production and Humidity, and a
positive correlation between Energy Production and Temper
ature. Whenever the humidity is low, the produced energy
is high and vice versa. In contrast, the amount of produced
energy increases as the temperature increases. This leads us
to examine the relationship between Humidity and Tempera
ture. As expected, a negative correlation between these two
variables is confirmed. The associations between the three
variables are naturally intuitive, since high solar irradiance
and low humidity result in high temperature, and vice
versa.

When wind turbine is the energy source, we found a
weak negative correlation between Air Pressure and Energy
Production, as well as a weak negative correlation between
Air Pressure and Wind Speed. These correlations can be intu
itively explained. As the air flows from high pressure area
to low pressure area, and thus creates wind, it results in a
negative correlation between air pressure and wind speed.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

Since the wind speed is directly correlated to the produced
energy (through the wind turbine), it explains the negative
association between air pressure and the energy production.

Similarly, when examining other weather-related vari
ables, we found a positive correlation between Wind Speed
and Temperature, and a negative correlation between Wind
Speed and Humidity. These two correlations are also intu
itive. The difference in temperature between two geograph
ical locations creates the motion of particles, which in turn
creates wind, thus the higher the difference in temperature,
the stronger the wind speed. This explains a strong co
dependence between these two variables. Similarly, stronger
winds lead to an increase of evaporation, thus more humid
ity, and therefore results in a negative correlation between
them. Note, however, that while we discuss the correlations
between weather-related variables found by AMIC, we do
not imply the order of causality between them. Determining
causality in the relations between variables is outside the
scope of this work.

We test another pair of variables, Wind Direction and
Wind Speed. Interestingly, we found a relatively weak pos
itive correlation between them. As Wind Direction indicates
the direction in which the wind flows (measured in degrees),
and Wind Speed describes how fast the air is moving (mea
sured in km/hour), it is not obvious how to explain the na
ture of this correlation. However, the discovered correlation
might prompt users new opportunities for further analysis.
As we do not attempt to explain the causality behind the
correlation, we refer readers to other articles such as [49] for
further understanding of this phenomenon.

Analyzing the data sets further, we examine the energy
estimation models used by the company. Since the energy
trading company has to manage and trade the produced
energy, it needs to estimate the energy production based
on its resources (such as solar and wind). To understand
how accurate the estimation model is, we analyze the pair
(Energy Production, Estimated Production). As returned by
AMIC, the two variables are strongly correlated, with the
MI magnitude between the pair is nearly equal to their
joint entropy, indicating that the two variables are almost
identical. This verifies that the energy estimation model
used by the company provides highly accurate estimated
values.

Beside discovering correlations, AMIC also prunes mul
tiple pairs of variables that are not correlated. For example,
AMIC shows that there is no correlation between (Energy
Production, Estimated Running Capacity), (Energy Production,

Nacelle Direction), or (Estimated Reduction, TSO (OnShore)).
These pruning results show the reliability of AMIC, as one
should not expect any dependencies between the produced
energy and the engine direction.

5.7 Threshold Effects

To evaluate the effects of the correlation threshold, we
combine synthetic relations (generated in Section 5.3) into a
single data set and apply AMIC using different thresholds.
In Figure 16, Total Windows are the total number of extracted
windows satisfying the threshold, and Meaningful Windows
are the extracted windows that contain the defined relations.
Figure 16 shows that when the threshold is too low (e.g.,
::; 0.3), it can produce many uninteresting windows, and

16
TABLE 2: Comparison between different correlation metrics

Relations AMIC(MI) PCC dCor
Linear /(2.689) /(0.998) /(0.998)
Exponential /(2.391) /(0.461) /(0.584)
Quadratic /(2.291) X (0.01) /(0.49)
Diamond /(0.793) X (-0.03) /(0.228)
Circle /(1.755) X (O) /(0.118)
Sine /(1.295) X (-0.07) /(0.377)
Cross /(1.34) X (O) /(0.245)

when the threshold is too high (e.g, ;::: 0.6), it might miss
interesting correlations. These results use Ji2) to set the
threshold, although using J&1) produces similar results.

300

250

l
� 200

'" -g 150

l
" 100

50 .,
"

2020 2020 1420

- - ..
0,1 0,2 0,3 0,4 0,5 0,6

MI Threshold

• Total Windows • Meaningful Windows

Fig. 16: Threshold Effects

5.8 Comparison Against Other Methods

Comparison between different correlation metrics has been
studied in the literature, such as in [38]. In this section,
we make a short comparison between our method (i.e.,
AMIC using MI) and those using two other representative
metrics: the Pearson correlation coefficient (PCC) [36] and
the distance correlation dCor [50]. We apply these metrics
on synthetic data sets to verify their capability in discov
ering different types of relations. The results are reported
in Table 2 (a check mark indicates the correct identification
of the corresponding relation, while a cross indicates non
identification, and the number in each column is the value
computed by the corresponding metric). In this table, PCC
can only identify two relations (with the check mark), while
MI and dCor can identify all of the relations. Although dCor
has similar capability as MI in discovering different types
of relations, it can work only with numeric values (because
of the distance measure). In contrast, MI can work with any
types of data because it relies on the probability distribution,
and thus fits better in Big Data contexts and is a better
candidate to address the variety challenge of Big Data.

5.9 Performance and Scalability Evaluation

Performance evaluation: To evaluate the performance of
AMIC, we compare the execution times of AMIC against
a brute force version on different data sizes. The brute force
version computes the MI for every window without using
incremental computation. To have a fair comparison, we
only report the results in which the two algorithms run
on one node. As shown in Table 3, our optimized version
can achieve a speedup of 2, and the larger the data size,
the larger the speedup. Note that the speedup will change
depending on the data distribution. For example, if the data
series are strongly correlated, the search will stop earlier,
while if the data are weakly correlated, the search will take
longer to identify significant windows.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

TABLE 3: Execution times of optimized incremental algo-
rithm and brute force algorithm

#Samples Brute Force Incremental SW
1K 2.05 sec 1.95 sec
2K 6.37 sec 4.17 sec
4K 14.57 sec 8.78 sec
SK 32.96 sec 14.46 sec

12K 50.51 sec 21.6 sec
16K 1 min 25.18 sec 49.63 sec
20K 1 min 55.3 sec 1 min 0.6 sec
30K 3 mins 1.44 sec 1 min 27.04 sec
SOK 8 mins 57.48 sec 3 mins 39.04 sec
100K 21 mins 8.97 sec 10 mins 9.05 sec

Scalability evaluation: To evaluate the scalability of AMIC,
we perform both stress test and scalability test on our Spark
cluster, using synthetic data sets. The stress test is performed
by fixing the number of executors used in the Spark cluster
while changing the data sizes. In Figure 17a, the number of
executors is fixed to 2 while the data size changes from 500
thousands to 2 millions data points. The stress test shows
that AMIC can scale to large data sets with the execution
time grows linearly to the data sizes. On the other hand,
the scalability test is performed by fixing the data size while
changing the number of executors. In Figure 17b, we use the
data size containing 6 millions data points, and the number
of executors ranging from 1 to 160 with 5 cores per executor.
The scalability test shows that AMIC is well parallelized,
and achieves significant speedup under parallelism (e.g., 6
millions data points are processed in less than 2 minutes).

IO
9.4

8.12

6.13

SOOK 700K 900K LlM 1.3M 1.5M 1.7M 2M
Number of Data Points (K: thousand, M: million)

40.7
40

1 20 40 60 80 100 120 140 160
Number of Executors

(a) Stress Test (b) Scalability Test

Fig. 17: Stress Test and Scalability Test on Spark cluster

Summary In this section, we have performed an ex
tensive evaluation on the performance of AMIC, verifying
its capability in addressing Big Data challenges: variety,
volume, velocity, and scalability. Specifically, the use of MI
to measure correlations allows AMIC to uncover different
types of relations and to work on any types of data, and thus
to tackle the variety challenge. The layering approach with
incremental streaming computation helps overcome the vol
ume and velocity challenges. Finally, the use of Apache
Spark ensures the scalability of the AMIC framework.

6 CONCLUSION
In this paper, we present AMIC, an adaptive and scalable
method based on information-theoretical concept of mutual
information to search for multi-scale temporal correlations
in big data sets. The use of mutual information in searching
for correlations helps tackle the variety challenge, whereas
the hierarchical top-down search approach with incremental
update helps overcome the volume and velocity challenges
of Big Data. The method has been extensively evaluated
using both synthetic and real-world data sets. With the
presented results, we believe that the proposed method can

17

be beneficial for both Data Science and Big Data commu
nities, providing users an efficient tool to explore big and
heterogeneous data sets.

The approach also suggests a new perspective on how
we should deal with Big Data. In an era where data are
massive, diverse and complex, a wise treatment for it is
not to process entire data blindly, but to pre-select the most
informative data partitions before performing any further
analysis. By reducing the amount of data that are potentially
not informative, different mining and learning algorithms
can be beneficial in terms of computation efficiency and ac
curacy. For future extensions, several directions are promis
ing. For example, AMIC can be extended to capture the
spatial component of data, the time delayed correlation, or
to discover the dependency across more than two variables.

ACKNOWLEDGMENTS

This work has been partially supported by the DICYPS
project funded by Innovation Fund Denmark, the GoFLEX
project funded by the Horizon 2020 program, and the AAU
International Postdoc Program.

REFERENCES

[1] A. Agresti and B. Finlay, Statistical Methods for the Social Sciences.
Pearson Education Limited, 2014.

[2] Nye open data. [Online]. Available:
https:/ / opendata.cityofnewyork.us

[3] W. E. Dean Jr and R. Y. Anderson, "Application of some correla
tion coefficient techniques to time-series analysis," Journal of the
International Association for Mathematical Geology, vol. 6, no. 4, pp.
363-372, 1974.

[4] H.-C. Huang, S. Zheng, and Z. Zhao, "Application of pearson
correlation coefficient (pee) and kolmogorov-smirnov distance
(ksd) metrics to identify disease-specific biomarker genes," BMC
Bioinformatics, vol. 11, no. 4, p. 1, 2010.

[5] G. Chamberlain, "Analysis of covariance with qualitative data,"
1979.

[6] P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, "Correlation analy
sis of spatial time series datasets: A filter-and-refine approach," in
PAKDD Proc., 2003.

[7] M. C. Vuran, 6. B. Akan, and I. F. Akyildiz, "Spatio-temporal
correlation: theory and applications for wireless sensor networks,"
Computer Networks, vol. 45, no. 3, pp. 245-259, 2004.

[8] C. Zhou, F. Zhou, and Y. Chen, "Spatio-temporal correlation-based
fast coding unit depth decision for high efficiency video coding,"
Journal of Electronic Imaging, vol. 22, no. 4, pp. 043 001-043 001,
2013.

[9] E. W. Dereszynski and T. G. Dietterich, "Spatiotemporal models
for data-anomaly detection in dynamic environmental monitoring
campaigns," ACM Transactions on Sensor Networks (TOSN), vol. 8,
no. 1, p. 3, 2011.

[10] T. T. N. HO, "Towards sustainable solutions for applications in
cloud computing and big data," in Doctoral dissertation. Politec
nico di Milano, Italy, 2017, http:/ /hdl.handle.net/10589/131740.

[11] T. T. N. Ho and B. Pernici, "A data-value-driven adaptation
framework for energy efficiency for data intensive applications
in clouds," in Technologies for Sustainability (SusTech), 2015 IEEE
Conference on. IEEE, 2015, pp. 47-52.

[12] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, "Finding related tables," in S/GMOD Proc., 2012, pp.
817-828.

[13] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava, "Fusing data with correlations," in S/GMOD Proc.,
2014.

[14] A. Alawini, D. Maier, K. Tufte, and B. Howe, "Helping scientists
reconnect their datasets," in SSDBM Proc., 2014.

[15] S. Roy and D. Suciu, "A formal approach to finding explanations
for database queries," in SIGMOD Proc., 2014.

[16] J. Yang, W. Wang, H. Wang, and P. Yu, "a-clusters: Capturing
subspace correlation in a large data set," in Data Engineering Proc.,
2002.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/ 10.1109/TBDA T A.2019.2907987

IEEE TRANSACTIONS ON BIG DATA

[17] E. P. de Sousa, C. Traina Jr, A. J. Traina, L. Wu, and C. Faloutsos,
"A fast and effective method to find correlations among attributes
in databases," Data Mining and Knowledge Discovery, vol. 14, no. 3,
pp. 367-407, 2007.

[18] M. Middelfart, T. B. Pedersen, and J. Krogsgaard, "Efficient sen
tinel mining using bitmaps on modern processors," IEEE Transac
tions on Knowledge and Data Engineering, vol. 25, no. 10, pp. 2231-
2244, 2013.

[19] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire, "Data
polygamy: the many-many relationships among urban spatio
temporal data sets," in SIGMOD Proc., 2016.

[20] D. Schulz and J. P. Huston, "The sliding window correlation
procedure for detecting hidden correlations: existence of behav
ioral subgroups illustrated with aged rats," Journal of neuroscience
methods, vol. 121, no. 2, pp. 129-137, 2002.

[21] R. Cole, D. Shasha, and X. Zhao, "Fast window correlations over
uncooperative time series," in Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data
mining. ACM, 2005, pp. 743-749.

[22] F. Keller, E. Mi.iller, and K. Bol:un, "Estimating mutual information
on data streams," in SSDBM Proc., 2015.

[23] Q. Xie, S. Shang, B. Yuan, C. Pang, and X. Zhang, "Local correla
tion detection with linearity enhancement in streaming data," in
Proceedings of the 22nd ACM international conference on Information
& Knowledge Management. ACM, 2013, pp. 309-318.

[24] M. Bermudez-Edo, P. Barnaghi, and K. Moessner, "Analysing real
world data streams with spatio-temporal correlations: Entropy vs.
pearson correlation," Automation in Construction, vol. 88, pp. 87-
100, 2018.

[25] H. Peng, F. Long, and C. Ding, "Feature selection based on
mutual information criteria of max-dependency, max-relevance,
and min-redundancy," IEEE Trans. on pattern analysis and machine
intelligence, vol. 27, no. 8, pp. 1226-1238, 2005.

[26] P. A. Estevez, M. Tesmer, C. A. Perez, and J. M. Zurada, "Normal
ized mutual information feature selection," IEEE Trans. on Neural
Networks, vol. 20, no. 2, pp. 189-201, 2009.

[27] N. Slonim, G. S. Atwal, G. Tkacik, and W. Bialek, "Information
based clustering," Proceedings of the National Academy of Sciences of
the United States of America, vol. 102, no. 51, pp. 18 297-18 302, 2005.

[28] Y. Ke, J. Cheng, and W. Ng, "An information-theoretic approach
to quantitative association rule mining," Knowledge and Information
Systems, vol. 16, no. 2, pp. 213-244, 2008.

[29] J. P. Pluim, J. A. Maintz, and M. A. Viergever, "Mutual
information-based registration of medical images: a survey," IEEE
Trans. on Medical Imaging, vol. 22, no. 8, pp. 986-1004, 2003.

[30] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi, "Information
theoretic inference of large transcriptional regulatory networks,"
EURASIP journal on bioinformatics and systems biology, vol. 2007,
no. 1, pp. 1-9, 2007.

[31] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins,
G. Stolovitzky, R. D. Favera, and A. Califano, "Aracne: an al
goritl:un for the reconstruction of gene regulatory networks in a
mammalian cellular context," BMC bioinformatics, vol. 7, no. Suppl
1, p. S7, 2006.

[32] D. J. Albers and G. Hripcsak, "Using time-delayed mutual infor
mation to discover and interpret temporal correlation structure
in complex populations," Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 22, no. 1.

[33] J. Chen, A. Sharma, J. Edwards, X. Shao, and Y. Kamide, "Spa
tiotemporal dynamics of the magnetosphere during geospace
storms: Mutual information analysis," Journal of Geophysical Re
search: Space Physics, vol. 113, no. AS, 2008.

[34] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W. Shen,
"Supporting correlation analysis on scientific datasets in parallel
and distributed settings," in HPDC Proc., 2014.

[35] N. Ho, H. Vo, and M. Vu, "An adaptive information-theoretic
approach for identifying temporal correlations in big data sets,"
in Big Data (Big Data), 2016 IEEE International Conference on. IEEE,
2016, pp. 666-675.

[36] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley&Sons,2012.

[37] D. R. Brillinger, "Some data analyses using mutual information,"
Brazilian Journal of Probability and Statistics, pp. 163-182, 2004.

[38] S. de Siqueira Santos, D. Y. Takahashi, A. Nakata, and A. Fujita,
"A comparative study of statistical methods used to identify
dependencies between gene expression signals," Briefings in bioin
formatics, vol. 15, no. 6, pp. 906-918, 2013.

18

[39] L. Paninski, "Estimation of entropy and mutual information,"
Neural computation, vol. 15, no. 6, pp. 1191-1253, 2003.

[40] A. Kraskov, H. Stogbauer, and P. Grassberger, "Estimating mutual
information," Physical review E, vol. 69, no. 6, 2004.

[41] A. Papana and D. Kugiumtzis, "Evaluation of mutual information
estimators for time series," International Journal of Bifurcation and
Chaos, vol. 19, no. 12, pp. 4197-4215, 2009.

[42] M. Vejmelka and K. Hlavackova-Schindler, "Mutual information
estimation in higher dimensions: A speed-up of a k-nearest neigh
bor based estimator," in ICANNGA Proc.

[43] T. Schreiber, "Efficient neighbor searching in nonlinear time series
analysis," International Journal of Bifurcation and Chaos, vol. 05,
no. 02, pp. 349-358, 1995.

[44] K. Conrad, "Probability distributions and maximum entropy,"
Entropy, vol. 6, no. 452, 2004.

[45] Center of urban science and progress, new york university.
[Online]. Available: http:/ /cusp.nyu.edu

[46] Center of data-intensive system. [Online]. Available:
http:/ /www.daisy.aau.dk

[47] R. Smith, "A mutual information approach to calculating nonlin
earity," Stat, vol. 4, no. 1, pp. 291-303, 2015.

[48] M. Hazewinkel, "Linear interpolation," in Encyclopaedia of Mathe
matics. Springer Science & Business Media, 1990.

[49] S. Velazquez, J. A. Carta, and J. Matias, "Comparison between
anns and linear mcp algorithms in the long-term estimation of the
cost per kwh produced by a wind turbine at a candidate site: a
case study in the canary islands," Applied energy, vol. 88, no. 11,
pp. 3869-3881, 2011.

[50] G. J. Szekely, M. L. Rizzo, and N. K. Bakirov, "Measuring and
testing dependence by correlation of distances," The annals of
statistics, pp. 2769-2794, 2007.

Nguyen Ho is a Postdoc Research Associate at
the Center for Data-Intensive Systems (Daisy) at
the Department of Computer Science, Aalborg
University, Denmark. Her research focuses on
Big Data Analytics and Machine Learning
methods for spatio-temporal multidimensional
big data. Her current research interests include
Big Data Analytics, Knowledge Extraction and
Inference.

Huy Vo is an Assistant Professor of Computer
Science at the City College of New York and a
member of the doctoral faculty at the Graduate
Center, City University of New York. He is also a
faculty member at the Center for Urban Science
and Progress, New York University. His current
research focuses on high performance systems
for interactive visualization and analysis of big
data sets, specifically in urban applications. He
has over ten years of research experience in
large-scale data analysis and visualization, and

co-authored over 40 technical papers and 3 patents, and contributed to
several widely-used open-source systems.

Mai Vu is an Associate Professor in Electrical
Engineering at Tufts University, USA. She con
ducts research in wireless communication and
networks, signal processing and information the
ory. Dr. Vu has served on the TPC of numerous
IEEE conferences and during 2013-2016 served
as an editor for the IEEE Transactions on Wire
less Communications. She is a senior member
of the IEEE.

Torben Bach Pedersen is a Professor at the
Center for Data-Intensive Systems (Daisy) at the
Department of Computer Science, Aalborg Uni
versity, Denmark. His research concerns busi
ness intelligence and big data, especially "Big
Multidimensional Data" - The integration and
analysis of large amounts of complex and highly
dynamic multidimensional data. He is an ACM
Distinguished scientist, a senior member of the
IEEE, and a member of the Danish Academy of
Technical Sciences.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

	Page_00001
	Page_00002
	Page_00003
	Page_00004
	Page_00005
	Page_00006
	Page_00007
	Page_00008
	Page_00009
	Page_00010
	Page_00011
	Page_00012
	Page_00013
	Page_00014
	Page_00015
	Page_00016
	Page_00017
	Page_00018

