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Abstract—In big cities, taxi service is imbalanced. In some
areas, passengers wait too long for a taxi, while in others,
many taxis roam without passengers. Knowledge of where a
taxi will become available can help us solve the taxi demand
imbalance problem. In this paper, we employ a holistic approach
to predict taxi demand at high spatial resolution. We showcase
our techniques using two real-world data sets, yellow cabs and
Uber trips in New York City, and perform an evaluation over
9,940 building blocks in Manhattan. Our approach consists of
two key steps. First, we use entropy and the temporal correlation
of human mobility to measure the demand uncertainty at the
building block level. Second, to identify which predictive algo-
rithm can approach the theoretical maximum predictability, we
implement and compare three predictors: the Markov predictor
(a probability-based predictive algorithm), the Lempel-Ziv-Welch
predictor (a sequence-based predictive algorithm), and the Neural
Network predictor (a predictive algorithm that uses machine
learning). The results show that predictability varies by building
block and, on average, the theoretical maximum predictability
can be as high as 83%. The performance of the predictors also
vary: the Neural Network predictor provides better accuracy for
blocks with low predictability, and the Markov predictor provides
better accuracy for blocks with high predictability. In blocks
with high maximum predictability, the Markov predictor is able
to predict the taxi demand with an 89% accuracy, 11% better
than the Neural Network predictor, while requiring only 0.03%
computation time. These findings indicate that the maximum
predictability can be a good metric for selecting prediction
algorithms.

Index Terms—human mobility; taxi demand prediction; spatio-
temporal data; limit of predictability; predictive algorithm

I. INTRODUCTION

In big cities, taxi service is imbalanced [1]. While in some
areas passengers experience long waits for a taxi, in others,
many taxis roam without passengers. This imbalance leads to
profit loss for taxi companies, since vehicles are vacant even
when there is demand. Besides, it reduces the level of the
passenger satisfaction due to long wait times. The ability to
predict taxi demand can help address the taxi-service imbal-
ance problem. Knowledge of where a taxi should be traveling
can bring benefits to both taxi drivers and companies: taxi
drivers can drive to high taxi demand areas, and taxi companies
(e.g, Uber) may re-allocate their vehicles in advance to meet
the passenger demand.

We define the taxi-demand prediction problem as follows:
given historical taxi demand data in a region i, we want to
predict the number of taxis that will emerge within i during

the next time interval. Inspired by previous works [2], [3], [4],
[5], [6], [7], we aim to predict the met taxi demand. We use the
number of pick-ups as a representation of the taxi demand in a
region, and treat them as sequence data (see Fig. 1). Note that
although we focus on met taxi demand, our method is general
and can be applied for predicting the unmet taxi demand. As
we discuss in Section VII-B, unmet demand can be inferred
from the met taxi demand [8], [9].

Many methods have been proposed to predict taxi demand,
including uncertainty analysis [2], probabilistic models [6],
time series [4], [5], SVM [3] and neural networks [7].
However, to apply these methods, we must answer two key
questions: 1. Given a predictive algorithm α, considering both
the randomness and temporal correlation of the taxi demand
sequence, what is the upper bound of the potential accuracy
that a predictive algorithm α can reach? 2. Given an upper
bound of potential accuracy, which predictor has a better
performance given the trade-off between the computation time
and the accuracy?

In this paper, we answer these questions by analyzing the
maximum predictability (Πmax) of taxi demand in a region to
select the best predictor. The maximum predictability is de-
fined by the entropy of the taxi demand sequence, considering
both the randomness and the temporal correlation. Maximum
predictability Πmax was first introduced by Song et. al for
analyzing user mobility [10]. They used a data set capturing
the mobility patterns of 50,000 individuals over three months
and showed that there is a potential 93% predictability in user
mobility. Here, we define the maximum predictability Πmax

as the highest potential accuracy that a predictive algorithm
can reach for predicting taxi demand.

The maximum predictability captures the degree of temporal
correlation of the taxi demand sequence by measuring the
regularity of human mobility. For most regions, the taxi
demand is governed by a certain amount of randomness (e.g.,
unexpected events) and some degree of regularity (e.g., weekly
patterns), which can be exploited for prediction. For example,
a building block with Πmax = 0.3 indicates that for at least
70% of the time, the taxi demand of this block appears to
be random, and only for 30% of the time can we hope to
predict the taxi demand. In other words, no matter how good
the predictive algorithm is, we cannot predict with better than
30% accuracy the future taxi demand of a building block
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Figure 1. Heterogeneous taxi demand sequences in two building blocks: (top)
a dense traffic area around the Metropolitan Museum of Art; and (bottom) a
more open traffic area near the west port in NYC.

with Πmax = 0.3. Πmax represents the fundamental limit for
predictability of the taxi demand in a building block.

a) Predictability Variation in Different Regions: Previous
work assumed that the maximum predictability (the degree
of the temporal correlation) in different regions is the same,
and proposed the use of a single predictive algorithm for all
regions [4]. However, the strong temporal correlation of taxi
demand does not always hold. Different regions have different
functions and thus different predictability (see Section V-B).
Fig 1 shows the hourly taxi demand from two building blocks
in NYC. The taxi demand near the Metropolitan Museum of
Art (MoMA) (Fig.1 top) exhibits a strong temporal pattern.
The regular peaks in MoMA happen during weekends and
after the close time every weekend – people usually visit the
museums during weekends and leave after the close time. In
contrast, the taxi demand near the west port (Fig. 1 below)
seems to be more random. There is no clear temporal pattern
near the west port. This is because the taxi demand in a
transportation hub such as the west port is heavily dependent
on the arrival of ships and there is a high variability of arrival
time [11]. In fact, the taxi demand near MoMA has one of the
highest predictability among all the building blocks in NYC,
and the taxi demand near the west port has one of the lowest
predictability. Intuitively we should use different predictors for
predicting the taxi demand in these two building blocks. For
MoMA it is better to use a predictor that is able to capture
the temporal correlation, for example, a Markov predictor.
For the west port, a predictor that uses machine learning and
capture additional features such as the ship schedule may be
more effective. We posit that to select best predictor, we must
analyze the maximum predictability (Πmax) of the taxi demand
in each region.

Contributions. In this paper, we make three key contribu-
tions:

• We measure the theoretical maximum predictability of
the taxi demand for each building block in NYC. This
represents the upper bound of the potential accuracy that
a predictive algorithm α can reach. We show that the

maximum predictability of the taxi demand can reach up
to 83% on average. The maximum predictability captures
the degree of the temporal correlation of the taxi demand
sequence. Our findings indicate that taxi demand in NYC
has a strong temporal patterns.

• We implement and compare the prediction accuracy of
three predictors: the Markov predictor (a probability-
based method) [12], the Lempel-Ziv-Welch (LZW) pre-
dictor (a sequence-based method) [13], and the Neu-
ral Network (NN) predictor (a machine learning-based
method) [7]. We observe that the NN predictor provides
better accuracy for building blocks with low predictabil-
ity, and the Markov predictor provides better accuracy
for building blocks with high predictability. Our findings
indicate that the maximum predictability is an approach-
able target for actual prediction accuracy and a compute-
intensive NN predictor with multiple features does not
always outperform a simpler Markov predictor.

• We show that knowledge of the predictability at each
building block can help determine which predictor to
use, while taking accuracy and computational cost into
consideration. Most of the previous research does not
consider the heterogeneity of the predictability in dif-
ferent regions and uniformly applies the same prediction
method, and this can lead to inefficiencies. For example, a
Markov-based predictor is four orders of magnitude faster
(with only 0.03% computation time) than a computing-
intensive NN predictor.

The remainder of this paper is organized as follows. Section
II presents how we obtain the maximum predictability Πmax

and Section III describes the three approaches we implemented
for predicting taxi demand. In Section IV, we introduce the
data sets we use in this paper and how we preprocess these
data. We discuss the results of the taxi demand predictabil-
ity analysis in Section V. In Section VI, we compare the
performance of the three predictive algorithms and show
that predictability provides an effective measure for selecting
appropriate prediction methods. Related work is discussed in
Section VII and we conclude in Section VIII, where we outline
directions for future work.

II. PREDICTABILITY OF TAXI DEMAND

In this section, we formally define maximum predictability
Πmax. Our goal is to answe the following question with the
proposed maximum predictability Πmax:

Problem 1. Given a predictive algorithm α and a sequence
of the taxi demand D

(i)
n from time 1, 2, . . . n at building

block i, considering both the randomness and the temporal
correlation of the taxi demand, we want to find the maximum
predictability (the highest potential accuracy) Πmax that a
predictive algorithm α can reach.

A. Taxi Demand

We use the number of taxi pick-ups d(i)
t to represent the

taxi demand at building block i at time t (1 ≤ i ≤ m



Symbol Meaning
d
(i)
t The real taxi demand at the building block i at time t (1 ≤ t ≤ n).

X
(i)
t Taxi demand as a random variable.

D(i)
n The historical taxi demand sequence, d(i)1 d

(i)
2 d

(i)
3 . . . d(i)n .

N(i) N(i) is the number of distinct taxi demand at the building block i
S(i)
n Time-ordered subsequence S(i)

n , S(i)
n ⊂ D(i)

n

S′(i)n The length of the shortest unseen subsequence starting at the time t
S

(i)
random Random entropy of D(i)

n

S
(i)
Shannon Shannon entropy of D(i)

n

S
(i)
real Real entropy of D(i)

n

Π The predictability of an arbitrary predictive algorithm α
Πmax The upper bound of predictability Π, where Π ≤ Πmax

TABLE I
MEANINGS OF MAIN SYMBOLS USED

and 1 ≤ t ≤ n). For a given building block i, we have
a sequence of the historical taxi demand as a sequence
D

(i)
n = d

(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n . Note that here D(i)

n is a sequence
representing the taxi demand from time 1 to n. For example,
D

(i)
n = 2122 indicates that for block i, at time step 1 there

were 2 pickups, at time step 2 1 pickup, and so on. Table I
summarizes the main symbols used in this paper.

Since there can be high variability in taxi demand, it is
hard to predict the exact value for d(i)

t . For simplicity, we
use a factor q to round the value for the taxi demand. We
group every q taxi demand as one taxi demand. We try to
predict the taxi demand at every q level, e.g., if q = 10, then
620-629 all become 620 in the sequence. After a few tests,
we set q = 10 for making the prediction more relaxed while
keeping the errors low. We show the effect of q on Πmax in
our technical report [14] Appendix D.

B. Entropy

Entropy is an effective measure to characterize the degree
of predictability. In general, a low entropy means higher
predictability. We use three entropy measures: the random
entropy S(i)

random, the Shannon entropy S(i)
Shannon, and the real

entropy S(i)
real [15].

1) Random Entropy:

S
(i)
random = log2N

(i) (1)

Here N (i) is the number of unique taxi demand in D(i)
n , e.g.,

for the sequence D(i)
n = 2122, the unique taxi demand N (i) is

2. In general lower entropy means higher predictability. If the
taxi demand in building block i is low, the random entropy
S

(i)
random will be a small number and it would be easy to predict

taxi demand.
2) Shannon Entropy:

S
(i)
Shannon = −

N(i)∑
t=1

p(d
(i)
t )log2p(d

(i)
t ) (2)

Here p(d(i)
t ) is the probability that there is d(i)

t taxi demand
at the building block i – it characterizes the uncertainty of
the taxi demand. Note that both random entropy and Shannon
entropy are time-independent and do not consider temporal
patterns. A sequence D

(i)
n = 2122 has the same random

entropy and Shannon entropy as sequence D(i)
n = 1222.

3) Real Entropy:

S
(i)
real = −

∑
S

(i)
n ⊂D(i)

n

P (S(i)
n )log2[P (S(i)

n )] (3)

P (S
(i)
n ) represents the probability of finding a particular

time-ordered sub-sequence S(i)
n in the taxi demand sequence

D
(i)
n . Unlike Shannon entropy and random entropy, the real

entropy not only considers the frequency of different taxi
demand in a building block, but also the order of the temporal
patterns of the taxi demand [15].

The problem of finding all the subsets of a given set
has exponential complexity (O(2n)). Here we use a Lempel-
Ziv estimator to calculate the real entropy. The Lempel-Ziv
estimator can rapidly converge to the real entropy [16]. For
a taxi demand sequence after time n, the entropy can be
estimated by

S
(i)
real ≈

( 1

n

∑
t

s
′(i)
t

)−1

lnn (4)

Here, s′(i)t represents the length of the shortest subsequence
starting at the time t which doe not appear from 1 to t− 1.

C. Maximum Predictability Πmax

We define the predictability Π as the success rate that an
algorithm α can correctly predict the future taxi demand at
a building block. For a building block with N (i) unique taxi
demand, the predictability measure is subject to the Fano’s
inequality, Π ≤ Πmax [10]. Given an entropy S and the
distinct taxi demand N (i) in building block i, the maximum
predictability Πmax can be computed by the following equa-
tion:

S = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+(1−Πmax)log2(N (i) − 1) (5)

The maximum predictability Πmax is a value between 0 and
1. The larger the value, the more accurate the algorithm is. Due
to the space limit, we give a brief proof of the predictability
upper bound Πmax here. For details, we refer the reader to
Appendix. E in our technical report [14].

With different entropy measures, S(i)
random, S(i)

Shannon and
S

(i)
real, we have different maximum predictability values

Πrandom, ΠShannon and Πreal. It has been proven that
Πrandom ≤ ΠShannon ≤ Πreal [10], thus Πreal is the max-
imum predictability Πmax. Now we can answer the problem
proposed in the beginning of the section: given a predictive
algorithm α, Πmax is the maximum predictability that a
predictive algorithm α can reach. The detailed analysis of the
maximum predictability of each building blocks in NYC can
be found in Section V.

Proof. Given a predictive algorithm α, let Pα(X
(i)
n =

X̂
(i)
n |h(i)

n−1) be the distribution generated over the next taxi de-
mand X̂(i)

n at location i and h(i)
n−1 = {X(i)

n−1, X
(i)
n−2, . . . , X

(i)
1 }



the location i ’s past taxi demand from time 1 to n − 1.
Furthermore, X(i)

t represents the taxi demand at location i

at the time t, and Pr[X
(i)
n = x(i)|h(i)

n−1] is the probability
that the next taxi demand X(i)

n is x(i) given the taxi demand
history h(i)

n−1. Thus P (X
(i)
n |h(i)

n−1) is the true distribution over
the next taxi demand.

Let π(h
(i)
n−1) be the probability that there is a most likely

taxi demand at the location i given the taxi demand history
h

(i)
n−1. The probability of successfully predicting the next

taxi demand is Prα{X(i)
n = X̂

(i)
n |h(i)

n−1}. Since π(h
(i)
n−1) ≥

P (x(i)|h(i)
n−1) for any x(i), we have

Prα{X(i)
n = X̂(i)

n |h
(i)
n−1} =

∑
x(i)

P (x(i)|h(i)
n−1)Pα(x(i)|h(i)

n−1)

(6)

≤
∑
x(i)

π(h
(i)
n−1)Pα(x(i)|h(i)

n−1) (7)

= π(h
(i)
n−1) (8)

Then, we define the predictability Π(n) for a taxi demand
sequence with a history of length n− 1. P (h

(i)
n−1) represents

the probability of a particular taxi demand history h(i)
n−1. If we

sum over all the possible histories of length n − 1, we have
the predictability as Π(n) =

∑
h
(i)
n−1

P (h
(i)
n−1)π(h

(i)
n−1).

The overall predictability Π can be defined as Π =

lim
n→∞

1

n

n∑
t

Π(t).

Let N (i) be the total number of possible taxi demand value
and there is a uniform distribution over the remaining N (i)−1
possible taxi demand value. Then we will have X ′, whose
distribution P ′(X(i)|h(i)) = (p, 1−p

N(i)−1
, 1−p
N(i)−1

. . . , 1−p
N(i)−1

).

Note here S(X
(i)
n |h(i)

n−1) ≤ S(X ′|H(i)
n−1). Then we have

S(X ′) = SF (π(h
(i)
n−1). Here the Fano function SF (p) is

concave and monotonically decreases with p. Based on Fano’s
inequality, S(X

(i)
n |h(i)

n−1) ≤ SF (π(h
(i)
n−1)). Following Jensen’s

inequality, we have

S(n) =
∑
h
(i)
n−1

P (h
(i)
n−1)S(X(i)

n |h
(i)
n−1) (9)

≤
∑
h
(i)
n−1

P (h
(i)
n−1)SF (π(h

(i)
n−1)) (10)

≤ SF

∑
h
(i)
n−1

P (h
(i)
n−1)π(h

(i)
n−1)

 (11)

= SF (Π(n)) (12)

For a stationary stochastic process χ = X
(i)
t , based on

S(n) ≤ SF (Π(n)) and Jensen’s inequality, we have

S = lim
n→∞

1

n
S(X

(i)
1 , X

(i)
2 , . . . , X(i)

n ) (13)

= lim
n→∞

1

n

n∑
t=1

S(X
(i)
t |h

(i)
t−1) (14)

= lim
n→∞

1

n

n∑
t=1

S(t) (15)

≤ lim
n→∞

1

n

n∑
i=1

SF (Π(t)) (16)

≤ SF

(
lim
n→∞

1

n

n∑
i=1

(Π(t))

)
(17)

= SF (Π) (18)

Here S = limn→∞
1
nS(X

(i)
1 , X

(i)
2 , . . . , X

(i)
n ) is the def-

inition of entropy [15]. We define S(t) = S(X
(i)
t |h

(i)
t−1)

as the conditional entropy at the time t. Let Πmax be the
solution to the equation S = SF (Πmax) ≤ SF (Π). Since
SF (p) is concave and monotonically decreasing, we have
Π ≤ Πmax, which means that Πmax is the upper bound of the
predictability Π. The predictability upper bound Πmax can be
solved by the following equation:

S = −Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+ (1−Πmax)log2(N (i) − 1)

D. Scalability

The predictability upper bound Πmax can be obtained by
solving Equation 5. We move S to the right side of the
equation and obtain the following:

−Πmaxlog2(Πmax)− (1−Πmax)log2(1−Πmax)

+(1−Πmax)log2(N (i) − 1)− S = 0 (19)

Figure 2. Equation solver for the predictability Πmax. Here S
(i)
real = 1.40,

N(i) = 9. By solving the equation f(Πmax) = 0 we obtain Πmax = 0.78

In this equation, both S and N (i) are known numbers.
To solve this equation, we define the function f(Πmax) =



−Πmaxlog2(Πmax) − (1 − Πmax)log2(1 − Πmax) + (1 −
Πmax)log2(N (i) − 1)− S. Since Πmax is a value between 0
and 1, finding the intersection when f(Πmax) = 0 can solve
the equation with Πmax = γ. In Fig. 2, we plot a solution
when S

(i)
real = 1.40 and N (i) = 9, Πmax = γ = 0.78. Since

both S(i) and N (i) are known numbers for a building block i,
the computation time of solving all the equation f(Πmax) = 0
is O(m), where m is the total number of building blocks. We
can scale by distributing the computation of f(Πmax) = 0 for
each building block over multiple processors.

III. PREDICTORS

We propose three predictors: the Markov predictor (a
probability-based method) [12], the LZW predictor (a
sequence-based method) [13] and the Neural Network (NN)
predictor (a machine learning-based method) [7] for predicting
the taxi demand and compare the performance of them. In this
section, we answer the following question:

Problem 2. Given the maximum predictability Πmax of a
building block i, we want to find the predictor that has a better
performance given the trade-off between the computation time
and the accuracy.

A. Markov Predictor

We propose the order-k O(k) Markov predictor to predict
the future taxi demand from the k most recent taxi demand
sequence d

(i)
n−k+1, d

(i)
n−k+2, . . . , d

(i)
n . We define the taxi de-

mand during time t at the building block i as a random
variable X

(i)
t . Let X(i)

(t,k) donates the sequences of random

variable X
(i)
t , X

(i)
t+1, X

(i)
t+2, . . . , X

(i)
k for 1 ≤ t ≤ k ≤ n.

Considering the location i with a taxi demand history D(i)
n =

d
(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n and N (i) as the set of all possible taxi

demand at the building block i as shown in Section II-A,
following Markov assumption we have

P (X
(i)
n+1 = β|X(i)

n = D(i)
n ) (20)

= P (X
(i)
n+1 = β|X(i)

n−k+1,n = c) (21)

= P (X
(i)
t+k+1 = β|X(i)

t+1,t+k = c). (22)

Here P (X
(i)
n+1 = β|X(i)

n = D
(i)
n ) means that there are β

taxi demand at the building block i during the time interval
n + 1. c is the taxi demand where d(i)

n−k+1d
(i)
n−k+2 . . . d

(i)
n =

d
(i)
t+1d

(i)
t+2 . . . d

(i)
t+k = c. We propose a transition probability

matrix T as the Markov predictor (see Alg. 1), the rows
and columns in the matrix T represent the length k taxi
demand sequence. Each element Tc,c′ in the matrix represent
the prediction Tc,c′ = P (X

(i)
n+1 = β|X(i)

n = D
(i)
n ), where

c = d
(i)
n−k+1d

(i)
n−k+2 . . . d

(i)
n and c′ = d

(i)
n−k+2d

(i)
n−k+3 . . . d

(i)
n β.

The matrix T provides the immediate probability P (X
(i)
n+1 =

β|X(i)
n = D

(i)
n ) of the next symbol β after sequence D(i)

n .
As T is unknown, we define an estimate probability P ′ from

the taxi demand history D
(i)
n , where P ′(X(i)

n+1 = β|X(i)
n =

D
(i)
n ) =

C(cβ,D(i)
n )

C(c,D
(i)
n )

. Here C(cβ,D(i)
n )

C(c,D
(i)
n )

is the probability of the
subsequence cβ occurs in the sequence c.

We can estimate the next taxi demand X
(i)
n+1 at the the

building block i given the order-k O(k) Markov predictor
matrix T . In Alg. 1, we choose the β with the highest
probability in the predictor T that given the recent k length
sequence d(i)

n−k+1d
(i)
n−k+2 . . . d

(i)
n = c. Note that the Markov

predictor T might return an empty value given the recent taxi
demand sequence c. This is due to the fact that the taxi demand
history d

(i)
n−k+1d

(i)
n−k+2 . . . d

(i)
n = c did not occur previously.

In this case, we return the taxi demand with highest probability
in D(i)

n . We set k = 3 here to improve the prediction accuracy
while reducing the computation time [17].

It is easy to maintain and update the Markov predictor
matrix T in Alg. 1. For making the prediction, the predictor
can scan the matrix T at the row c and pick the next taxi
demand with the highest probability. Then the order-k O(k)
Markov predictor updates the row of c with the new taxi
demand in the matrix T after time n+ 1. Note that here T is
a c′ ×N (i) matrix, c′ is the unique taxi demand subsequence
and N (i) is the unique taxi demand in D(i)

n .

Algorithm 1: Order O(k) Markov Predictor
input : The taxi demand sequence D(i)

n , the recent sequence length k, the time
n and the Markov Predictor matrix T

output: The predicted taxi demand β at the time n+ 1

1 Extracting the recent length k subsequence c = d
(i)
n−k+1d

(i)
n−k+2 . . . d

(i)
n from

D(i)
n ending at the n;

2 Finding the subsequence c subsequence in T at the row T (c);
3 if T (c) is empty // The taxi demand sequence c did not appear

previously.
4 then
5 return the taxi demand with the highest probability in D(i)

n ;

6 else
7 Finding the cβ with the highest probability at the row T (c);
8 // Similar taxi demand history has appeared at least

once before
9 return β;

10 Update the matrix T with the new taxi demand d(i)n+1 at the time n+ 1.

B. Lempel-Ziv-Welch (LZW) predictor

The LZW predictor is based on the Lempel-Ziv-Welch text
encoding algorithm (LZW algorithm). Given a taxi demand
sequence D

(i)
n , LZW algorithm partitions D(i)

n into distinct
subsequence s(i)

0 , s
(i)
1 , s

(i)
2 , s

(i)
3 , . . . s

(i)
m , where s(i)

t represents
the shortest subsequence starting at the time t which does
not appear from 1 to t − 1 (see Alg. 2). For example, in
Appendix [14] Supplementary Figure S1, the taxi demand
history D

(i)
n = 112112132 can be parsed into subsequence

1, 2, 3, 11, 12, 21, 121, 13, 32 by LZW algorithm.
We build a LZW tree to maintain the LZW predictor (see

Alg. 2). The LZW tree is growing dynamically while parsing
the taxi demand history D(i)

n . The root of the tree is a empty
list. Each node represents one taxi demand subsequence s(i)

t

starting from the root with the sequences of nodes encountered
on the path to the node. Besides the taxi demand d

(i)
t ,

each node also maintains a counter count
d
(i)
t

to calculate



the occurrences of the subsequence d(i)
t . We define the taxi

demand during time t at the building block i as a random
variable X(i)

t . We have the LZW predictor as follows:

P (X
(i)
n+1 = β|D(i)

n ) =
NLZ(s

(i)
m β,D

(i)
n )

NLZ(s
(i)
m , D

(i)
n )

(23)

Similar to Markov predictor, here NLZ(s(i)m β,D(i)
n )

NLZ(s
(i)
m ,D

(i)
n )

represents

the probability that the subsequence s
(i)
m β occurs in the

sequence s
(i)
m . While the Markov predictor considers how

often does the sequence of interest occur in the entire taxi
demand sequence D(i)

n , the LZW predictor, only considers the
sequence of interest in the partitions s(i)

t .

Algorithm 2: LZW Predictor
input : The taxi demand sequence D(i)

n , the current time n
output: The predicted taxi demand β at the time n+ 1

1 Extracting all the taxi demand and put them in the table;
2 Initializing sequence g to be the first taxi demand d(i)t in D(i)

n ;
3 Building an empty LZW Tree;
4 while Any taxi demand input left in D(i)

n ;
5 do
6 g is the next taxi demand after c;
7 if g + h is in the tree;
8 then
9 g = g + h;

10 else
11 Update the LZW tree with g + h;
12 Update count

d
(i)
t

at each node;

13 g = h;

14 Finding the s(i)m β with the highest probability in the the LZW tree;
15 return β;

C. Neural Network Predictor
We propose a multilayer perception Neural Network (NN)

predictor to predict the next taxi demand (see Alg. 3). The
neural network predictor we implemented consists of two lay-
ers: Sigmoid and Softmax (see Appendix [14] Supplementary
Figure S2). We adopt the same input data, i.e., ”temperature”,
”precipitation”, ”wind speed”, ”day of the week” and ”hour of
the day” , as previous research for predicting taxi demand [7].
Both layers contain 100 neurons. Layers are based on the
standard sigmoid and softmax functions [18], and the output
for each of the layers is calculated as:

S(
∑
i

wid
(i)
t + b). (24)

Here, wi represents the weights and d
(i)
t represents input

demand and b represents bias. When the neural network is
trained, the prediction results are linearly convoluted using
the Gaussian kernel with the nearest demand time-wise:

G(D̂
(i)
n+1) =

∑
t

1√
2πσ

e
−D2

n−t
2σ2 (25)

where D
(i)
n+1 (β) stands for a predicted demand at the time

n+ 1, D(i)
n−t stands for the tth nearest known demand.

Algorithm 3: NN Predictor
input : The taxi demand sequence D(i)

n from time stamps T = {1, . . . , n} per
building block

output: The predicted taxi demand β at time stamps n+ 1
1 Creating multiple features from the timestamps: each of the time periods and

dates is assigned an individual binary feature that turns on during the period and
date. Creating derivative features for weekdays;

2 Training a separate MLP neural network for each building block.;
3 Calculating Gaussian convolution of the demand D̂(i)

n+1 predicted by the neural
network and the time-wise nearest values {D(i)

n−1, D
(i)
n−2, D

(i)
n−3, ...};

4 return D̂(i)
n+1 as β;

IV. DATA SETS AND PREPROCESSING

In this section, we introduce the data sets we used in this
paper and how we preprocess the data. We use the NYC yellow
taxi data set, the NYC Uber taxi data set, and NYC Pluto data
set. These data sets provide a good coverage of the city with
respect to both space and time.

A. Data Sets

Taxi data set. The New York yellow taxi data set is a public
data set provided by the Taxi and Limousine Commission
(TLC) [19]. It includes trip records from all trips completed
in yellow taxis in New York City in June, 2014. Each trip
record contains pick-up and drop-off time, pick-up and drop-
off locations, trip distances, itemized fares, and driver-reported
passenger counts. The data was recorded through meters
installed in each taxi. In total we have 13,813,031 taxi pick-up
records from 13,237 yellow taxis.

The New York Uber data set is a public data set provided
by the TLC [19]. This data set contains 663,845 Uber pick-
up records in June 2014. The key information provided by
these data sets is summarized in our technical report [14]
Supplementary Table S1. We extract the following information
from the data set: taxi id, pickup time and the corresponding
pick-up location (building block).

Pluto data set. We use the Pluto (Primary Land Use Tax
Lot Output) data set to map the GPS points with the associated
building blocks and provide the land use information for each
building block [20]. The Pluto data set is an extensive land use
and geographic data set provided by NYC Department of City
Planning. It contains detailed information about every piece
of land in the city, including year built, number of units, and
lot size.

B. Data Preprocessing.

We use the Pluto building shape file to map the pick-up
GPS points with the associated building blocks: if a building
block is within 200 ft radius of the pick-up location, we
consider that building as the one passengers getting on the
taxi and there is one taxi demand at that building block. If
multiple building blocks are within 200 ft radius of the pick-
up location, we consider the nearest building block as the one
that has a taxi demand. There are over 43,000 building blocks
in Manhattan, however, for meaningful analyses, only those
that have sufficient temporal coverage were included in our
study. We found 9,940 such building blocks in our data set



with at least 5 pick-ups a day. For the rest of the paper, we
only use these 9,940 building blocks, unless otherwise noted.
After the map matching process, we obtain the taxi demand
sequence for each building block (Building block id i, taxi
demand sequence D(i)

n = d
(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n ).

Scalability. All of our data preprocessing were conducted
using the operational data facility at our research center. In
particular, the mapping of taxi pickups to geospatial features,
which requires a lot of processing given the volume of the
pickup trips, on a 1200+ core cluster running Cloudera Data
Hub 5.4 with Apache Spark 1.6. The cluster consists of 20
high-end nodes, each with 24TB of disk, 256GB of RAM,
and 64 AMD cores. It takes about ten minutes for our R-tree
based [21] algorithm to map matching the 14 million samples.

V. RESULTS

In this section, we analyse the predictability of taxi demand
over each building block in NYC. We show that the maximum
predictability of the taxi demand can reach up to 83% accuracy
in average.

A. Limits of Predictability

We show the distribution of the entropy and the maximum
predictability obtained from the yellow taxi data set in Fig. 3.
Here we group taxi demand every hour and study the hourly
taxi demand. We first determine the entropy S and maximum
predictability Π of the taxi demand of each building block
using the yellow taxi data set. Then we obtain the distribution
of the entropy S and maximum predictability Π over all build-
ing blocks. Fig 3(a) depicts the entropy distribution of real
Entropy S

(i)
random, Shannon Entropy S

(i)
Shannon and random

Entropy S
(i)
real; whereas Fig 3(b) presents the distribution of

Πmax, ΠShannon, Πrandom respectively.
We find that the distribution of S(i)

random peak at S(i)
random =

3.6 (see Fig. 3 (a)). It implies that a building block would
have N (i) = 23.6 ≈ 12 distinct taxi demand levels. That is,
almost every two hours we will observe a new taxi demand
level compared to the previous one. Recall that we define
q = 10 when categorizing the taxi demand, which implies
that there are about 10 taxi demand differences every two
hour in the same building block. In contrast, the real entropy
S

(i)
real peaks at a much smaller entropy value, S(i)

real = 0.9.
As discussed in Section. II-B, the real entropy captures the
temporal correlation of the taxi demand sequence. The small
real entropy S(i)

real means a high temporal pattern.
The predictability that any algorithm can correctly predict

the next taxi demand is Π, and the upper bound is Πmax.
From the distribution of the maximum predictability Πmax

shown in Fig. 3 (b), we observe that average value of Πmax

is 0.83. It indicates that the taxi demand can be potentially
correctly predicted with an accuracy 83% over all the build-
ing blocks. Both Πrandom and ΠShannon are smaller than
Πmax, which is constant with the previous findings [10],
Πrandom ≤ ΠShannon ≤ Πmax. Since Πmax captures the
temporal correlation of taxi demand, we can reach a higher

(a) Entropy

(b) Predictability

Figure 3. Distribution of (a) Entropy (b) Predictability of the taxi demand
over all building blocks. The red line, the green line and the blue line refer to
the probability density function of S(i)

random, S(i)
Shannon, S(i)

real and Πmax,
ΠShannon, Πrandom in (a) and (b).

potential predictive accuracy if considering the temporal cor-
relation in our predictive algorithms. Similar results can also
be found if we group the taxi demand daily instead of hourly
(see our technical report [14] Supplementary Fig. S3).

B. Predictability of Different Functional Buildings

In Fig. 4 we plot the heat map of hourly taxi demand
predictability in Manhattan. From the figure we observe
that different building blocks exhibit different maximum pre-
dictability. In the working places such as Lower Manhattan
or residential places such as East Village, they have higher
predictability (temporal correlation). People usually go work
in the morning and come home during night, thus the pre-
dictability in these areas are higher compared to other places.

To further evaluate the predictability of different functional
regions, in Table II we show the predictability of taxi demand
of building blocks with different land use. Both residential
and working places have high predictability and thus exhibit
strong temporal patterns. For other places such as hotels,
transportation centers or bureau properties, the predictability
is not as high as the residential or working places. The taxi
demand for these regions is mainly dependent on the events
happened during the day. E.g., a boat arrives at the pier or
guests check out in a hotel.



Building Classes: First Level Building Classes: Second Level Maximum Predictability Πmax

H. HOTELS H1. Luxury Type, Built Prior to 1960 & Over 0.69
L. LOFTS L2. Fireproof Loft & Storage & Over 0.71

O. OFFICE BUILDINGS O3. Ten Stories & Over 0.72
O4. Tower Type 0.70

R. CONDOMINIUMS RC. Mixed Commercial/Condos 0.71
RK. Store Buildings, Retails 0.72

RH. Hotel/Boatel 0.71
S. RESIDENCE, MULTIPLE USE S3. 3-Family With Store/Office 0.71

T. TRANSPORTATION FACILITIES T2. Piers, Docks, Bulkheads 0.69
U. UTILITY BUREAU PROPERTIES U6. Railroads, Private Ownership 0.67

TABLE II
PREDICTABILITY OF DIFFERENT LAND USES

Figure 4. Heat map of predictability in Manhattan

C. Uber Versus Yellow Taxi

In this section we examine the difference of the predictabil-
ity between the Uber and yellow taxis. Due to the sparsity
of the Uber taxis, we analyse the maximum predictability of
both data sets at neighborhood level. We group the hourly
taxi demand in each neighborhood and examine the maximum
predictability of the hourly taxi demand sequence. As shown
in Fig. 5, the maximum predictability of the Uber taxi service
is higher than the yellow taxis. This is possibly because that
the yellow taxis usually use a random cruising strategy, while
the Uber taxis go to the passenger’s places when a request
is received. The temporal correlation of the taxi demand in a
region can be better captured by the Uber taxi. Similar results
can also be found in our technical report [14] Supplementary
Fig. S4 with daily taxi demand sequence.

VI. EVALUATION

In this section, we evaluate three predictors, the Markov
predictor [12], the LZW predictor [13], the NN predictor [7]
and examine which prediction algorithm can approach the
prediction upper bound Πmax.

A. Experiment Setup

We conduct our experiments, which consists of three predic-
tors, on a workstation with dual Intel Xeon E5-2695 2.4GHz

Figure 5. Distribution of Πmax of the Uber and yellow taxis

processors (12 cores in total) and 32 GB of memory. Our
algorithms were implemented in Python and also made use
of the scikit-learn package [22]. Inspired by previous work
[4], we use three weeks taxi pick-up data as the training data,
and one week taxi pick-up data as test data for comparing the
three predictors. We group the taxi demand hourly for each
building block. To reduce the bias, we pick 12 time intervals,
Monday, Wednesday and Sunday at midnight (00:00), morning
(06:00), noon (12:00) and evening(18:00) in the last week
as the prediction target. We rank the building blocks by the
maximum predictability Πmax, and group them into ten 1,000
building block groups. We pick up the a set of median building
blocks of each group to investigate (10 in each group). In total
we have 60,480 training samples and 1,200 testing samples.

Error metrics. We employ an error measurement value,
symmetric Mean Absolute Percentage Error (sMAPE [23]), to
evaluate the prediction algorithms. For a given building block
i, let R(i)

n = r
(i)
1 r

(i)
2 r

(i)
3 . . . r

(i)
n donates the predicted the taxi

demand sequence. We have the real taxi demand sequence
D

(i)
n = d

(i)
1 d

(i)
2 d

(i)
3 . . . d

(i)
n . sMAPE(i) is defined as follows

(for more details, please refer to our technical report [14]
Appendix F.):

sMAPE(i) =
1

n

n∑
t=1

|d(i)
t − r

(i)
t |

d
(i)
t + r

(i)
t + c

(26)

B. Evaluation

We show the sMAPE error of the three predictors and the
prediction error bound 1 − Πmax in Fig. 6 (a). We have ten



building block groups with Πmax increasing from low to high
(E.g., 0%-10% means the bottom 10% building block group
according to Πmax). For each group we calculate the average
prediction error. We find that the NN predictor provides better
accuracy for building blocks with low predictability. In the
group with lowest maximum predictability Πmax = 72%, the
NN predictor has a prediction accuracy 70%-the highest of all
predictors. This is because that the NN predictor is able to
capture the multiple features such as the weather information
[7], which can not be captured by other two predictors.

The Markov predictor provides better accuracy for building
blocks with high predictability, and converges to the pre-
dictability upper bound Πmax quickly. This is constant with
previous research that there is a high positive correlation
between the maximum predictability and the Markov predictor
prediction accuracy [12]. In the building blocks with high max-
imum predictability, the Markov predictor is able to predict
the taxi demand with an 89% accuracy, 11% better than the
NN predictor. Besides. the computation time of the Markov
predictor is only 0.5 seconds, 0.03% of the NN predictor (see
Fig. 6 (b)). The Markov predictor is able to provide better
predication accuracy with much less computation time for the
areas with high predictability.

From the experiment we find that the maximum predictabil-
ity Πmax can help us determining which predictor to use.
In the areas with low predictability we can use the NN
predictor to reach high accuracy by capturing the multiple
features, while in the areas with high predictability the Markov
predictor is able to provide better prediction accuracy while
keeping the computation time low.

VII. RELATED WORKS

A. Predicting Taxi Demand

Taxi demand prediction problem has attracted more atten-
tions recently due to the available of taxi data set. Mukai et.
al forecast the taxi demand from taxi historical data with a
neural network (multilayer perceptron) [7]. Li Et. al adapt
the feature selection tool, L1-Norm SVM, to select the most
salient feature patterns that determining the taxi performance
[3]. An improved ARIMA based prediction method to forecast
the spatial-temporal variation of passengers in hotspots is
proposed by Li et. al [5]. Moreira-Matias et. al argue that
ARIMA prediction method is not the best solution [4]. They
propose a new ensemble framework and show that their
ensemble work can reach a high prediction accuracy.

B. Inferring Unmet Demand

From the taxi data set we can measure and predict the met
taxi demand, that is, the number of the taxi services emerged
and will emerge at different locations. However, the unmet taxi
demand, e.g., the number of people who need a taxi but could
not find one, can not be simply extracted from the taxi data set.
To solve this problem, recent papers try to infer the unmet taxi
demand from the taxi data set. In [9] the authors combine flight
arrival with taxi demand and predict the passenger demand at
different airport terminals in Singapore use queueing theory.
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Figure 6. (a) Prediction error and (b) Computation time of the Markov, LZW
and NN predictor.

Anwar et. al [8] formalize the unmet taxi demand problem
and present a novel heuristic algorithm to estimate it without
any additional information. They infer the unmet taxi demand
from taxis with empty services and show that it can be used
to quantity the unmet demand. It must be noted that, although
in our paper we only focus on predicting the met taxi demand
of different building blocks. Our method is a general solution
and can be used for predicting unmet taxi demand.

C. Temporal Pattern of Human Mobility

It has been found that urban human mobility exhibit strong
regularities, e.g., people usually go to work during daytime
on weekdays, and go home after work. Marta et al. find that
the trajectories in human mobility exhibit strong regularities
by studying cell phone user’s locations [24]. They show
that human trajectories exhibit a high degree of temporal
and spatial temporal pattern. Each person has a significant
probability to return to a few highly frequented locations
such as home or working places. Song et al. propose the
entropy-based probability to measure the temporal pattern of
the individual human mobility [10]. They find an potential
prediction algorithm can reach up to 93% accuracy. They also
observe that the user can be found in his or her most visited
location during the corresponding hour long period with a high
probability, which also indicates the high temporal pattern of
human mobility. The temporal pattern of human mobility also
leads to the temporal pattern of taxi pick-ups. The human



mobility patterns for different functional regions are different.
Previous papers analyse the temporal pattern of urban human
mobility and infer the functions of the regions in three cities
[25], [26]. Similar results can also be found in Table II, where
there is a high predictability in the residential places and a
low predictability in the transportation hubs.

VIII. CONCLUSION

In this paper, we analyse over 14 million yellow and Uber
taxi pick-up samples in NYC. We find that there is a high
predictability of taxi demand (up to 83% in average), which
indicates strong temporal correlation of human mobility. We
also examine which predictive algorithm can approach the
maximum predictability. We show that the compute-intensive
NN predictor does not always have better prediction accuracy
than the Markov one. In the areas with low predictability, the
NN predictor can reach high accuracy by capturing additional
features (weather, etc). On the other hand, in the areas with
high predictability, the Markov predictor is able to reach high
prediction accuracy while keeping the computation time low.
We also find that, the temporal correlation of the taxi demand
can be better captured in the Uber taxi data, possibly due to
different cruising strategies.

It must be noted that our results is not limited to taxi demand
problem. Same approach can be used for predictions in other
spatio-temporal data sets, such as mobile traffic of a cellular
tower [27], the number of tweets at a location [28] or the
bike usage of a bike station [29]. In the future work, we will
propose a new predictability-based predictor for the spatio-
temporal prediction problem, e.g., the output of the Markov
model can be viewed as an feature for NN predictor.
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