
An Adaptive Information-Theoretic Approach for
Identifying Temporal Correlations in Big Data Sets

Nguyen Ho∗, Huy Vo†‡, Mai Vu§
∗Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

†Center for Urban Science and Progress, New York University, New York, USA
‡Department of Computer Science, the City College of New York, New York, USA

§Department of Electrical & Computer Engineering, Tufts University, Medford, MA, USA
Email: thithao.ho@polimi.it, huy.vo@nyu.edu, mai.vu@tufts.edu

Abstract—In the past two decades, new developments in
computing, sensing and crowdsourced data have resulted in an
explosion in the availability of quantitative information. The
possibilities of analyzing this so-called “big data” to inform
research and the decision-making process are virtually endless.
In general analyses have to be done across multiple data sets in
order to bring out the most value of big data. A first important
step is to identify temporal correlations between data sets.
Given the characteristics of big data in term of volume and
velocity, techniques that identify correlations not only need
to be scalable, but also need to help users in ordering the
correlation across temporal resolutions so that they can focus
on important relationships. There is a large body of work in
this area, however, most of them either only deal with small
data sets, using a fixed temporal resolution, or does not provide
a quantifiable measure of a correlation significance. In this
paper, we present a method based on mutual information to
identify correlations in large data sets. Discovered correlations
are suggested to users in an order based on their significance.
Our method supports an adaptive streaming technique that
minimizes duplicated computation and is implemented on top
of Apache Spark for scalability using big data platforms. We
also provide a comprehensive evaluation using real-world data
sets from NYC Open Data, and compare our findings against
a recent study.

Keywords-temporal correlation; mutual information; Big
Data; adaptive sliding window; streaming

I. INTRODUCTION

The true value of big data comes from analyzing multiple
data sets, in which discovering correlations among them is
one of the first steps towards creating new values in big
data applications. As data originally reside in individual
silos, each of them may serve for a specific and/or limited
purpose. However, their combination can, and often does,
offer new insights into important problems. In particular,
data correlation can result in the identification of individual
events and phenomena, as well as the creation of profiles to
track these activities even in real-time. Data correlation is
also useful in constructing and validating behavioral proxies.
For example, demonstrating that the traffic speed is well-
correlated with the number of taxi pickups through historical
data sources for which the latter are known directly (e.g.,
through the NYC Taxi & Limousine Commission) would

allow accurate measurement of traffic speeds in real-time.
More broadly, finding correlation among data sets will allow
policy makers to better understand cities, thus, providing
better operations and better planning to citizens.

Nevertheless, finding correlations in big data corpuses is
a hard problem. Not only the abundance of data makes it
impractical to manually determine the correlation between
them, their usually large temporal coverage is also a chal-
lenge in identifying periods of interest (e.g. an event) at
different data resolutions. Considering NYC Open Data [1],
with more than 1,500 data sets that have been published
and updated since 2009, it would take an immense amount
of effort for an analyst just to select a data set that is well-
correlated with another data set of interest and combine them
together. The challenge still persists even when correlated
data sets have been identified. For instance, when a policy
adviser wants to study the impact of taxi cabs on 311
complaints, s/he would like to know, e.g., a particular day
or week when the two data sets have the highest correlation
(if any). It is not only necessary to know whether two data
sets are well-correlated, but also when the correlations are
the strongest.

Although significant work has been done in finding cor-
relations between data sets, relatively little investigation has
been done with adaptive temporal resolution. Most of the
work in correlation analysis assume a fixed time resolution
for each data set. For example, finding correlation between
taxis and weathers will only return well-correlated periods
either in hours, in days, or in weeks. However, in practice,
it is common to see strong correlations between the two
data sets at multiple resolutions ranging from hours (e.g.
in raining) to weeks (e.g. during a storm). Additionally,
when multiple correlated periods are found, they are often
presented equally the same regardless of their significance.
Users then have to rank them manually for their analysis.

In this paper, we present a framework for identifying tem-
poral correlations in large data sets with adaptive resolutions.
We use mutual information to capture and quantify the co-
dependence between variables, thus, we are able to rank the
significance of the correlations automatically. This allows us

to suggest “more” interesting temporal periods to users for
further investigation. Our method also works in a streaming
fashion and minimizes duplicated computations. Finally, our
approach has been implemented on Apache Spark to handle
the large volume of today’s high-demand data sets.
Contributions The main contributions of this paper include:

• We describe a method based on mutual information to
identify correlations with adaptive temporal resolutions.

• We add streaming support to a state-of-the-art method
in computing mutual information for handling big data
sets. We also propose optimizations that minimizes
duplicated computations across streaming windows.

• We provide a Spark implementation for scalability.
• We perform a comprehensive evaluation of our tech-

niques on real-world data sets from NYC Open Data.

II. BACKGROUND

We first review the concept and properties of mutual
information (MI) in data analytics and discuss the state of
the art estimation method for computing MI values.

A. Mutual Information: Definition and Properties

In information theory, MI has been used as a measure
of mutual dependency between variables. It quantifies the
amount of information obtained about one variable through
the knowledge of other variables [2]. The mutual informa-
tion, I(X;Y), between two random variables X and Y
specifies how much knowledge about X is gained through
Y , or how much uncertainty of X is reduced by knowing
Y and vice versa. MI is a function of the probability
distribution, i.e., the probability density function (pdf) for
continuous variables and the probability mass function (pmf)
for discrete variables, and can account for both linear and
non-linear relationships. Eq. 1 defines the MI of two discrete
random variables X and Y :

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y)log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability of (X,Y), and p(x),
p(y) are the marginal probability of X and Y respectively.

From Eq. 1, p(x, y) measures the probability that X
and Y are observed together, while p(x) and p(y) are the
probability that X and Y separately occur. The fraction
log(p(x, y)/(p(x)p(y))) determines the magnitude of joint
occurrence over the individual realization of the variables.
The larger is this magnitude, the more likely these two
random variables occur together and thus, more likely to be
dependent on each other. Intuitively, if the two variables are
statistically independent, their MI is zero, meaning that given
the knowledge of one variable, it does not reveal anything
about the other. On the other hand, if the two variables are
statistically dependent, their MI will be greater than zero,
and attains larger value as the dependency between the two
variables is stronger.

MI owns several properties that make it advantageous
when evaluating correlations over other measures such as
covariance or the correlation coefficient [3]. First of all,
MI equals to zero if and only if the considered variables
are statistically independent. Otherwise, it is always greater
than zero if the variables hold some kind of dependency.
This property makes MI a general metric for measuring
correlations and is ideal for noisy data sets, which have
a high degree of biases and abnormality, thus, possessing
arbitrary and non-linear relationships [4]. Second, MI is
invariant under 1-1 transformations, i.e, IXY = IUV if
u = u(x) and v = v(y). This property says that under
the transformation, if X and Y maintain their distributions,
their MI is preserved [3]. This characteristic is well suited
for processing spatial-temporal data sets, which are often
collected beforehand at different resolutions. For example,
in our reference case study, taxi trip records were collected
every minute while traffic speeds were recorded every hour.

B. Estimating Mutual Information

Although MI is a powerful measure in discovering re-
lationships among data sets, it is challenging to apply
in practice due to the difficulty in estimating probability
distributions. Among several estimation methods [5], e.g.,
histogram, kernel density estimation etc., we choose a
popular non-parametric method proposed by Kraskov et al.
[6], hereafter called the KSG method, to approximate MI
because of the following reasons: (1) This method outper-
forms other estimators in terms of computational efficiency,
accuracy and is especially suitable for long and chaotic
time series [7]; (2) The method uses k-nearest neighbor
approximation and thus it is data efficient (i.e., it does
not require very large samples), adaptive and has minimal
bias [6]. This reason makes the method particularly suitable
to study spatial-temporal data, where dependency between
variables might only occur at specific times or locations.

1) KSG mutual information estimator: The main idea
of KSG estimator is that rather than directly compute the
joint and marginal probability distributions of considered
variables, it estimates the densities of data points in neigh-
borhoods [6]. For each data point, it first searches for k
nearest neighbor clusters (k is a pre-defined parameter)
and computes the distance d to the kth-neighbor. Then, the
population density within distance d is estimated by counting
the number of data points that fall inside d. This leads to
the computation of MI between X and Y as [6]:

I(X;Y) = ψ(k)− 1/k − < ψ(nx) + ψ(ny) > +ψ(N) (2)

where ψ is the digamma function, k is the number of nearest
neighbors, (nx, ny) is the number of marginal data points in
each dimension falling within the distance d, N is the total
number of data points and < . > is the average function.

The intuition behind this estimator is, as MI aims to seek
for the knowledge of X based on Y (or vice versa), it looks

Figure 1. Taxi Trips vs. Wind Speed in normal days (red) and hurricane
(blue)

into Y ’s neighborhood and checks if nearby values yi result
in closely related values xi. It means that, for a specific data
point, if its neighborhood in the (X,Y) space corresponds
to similar data, then knowing Y helps predicting X and vice
versa, implying a high MI between X and Y. This concept is
illustrated in Fig. 1, plotting taxi trips (counted by hour) and
wind speed (averaged by hour) in NYC during two different
periods: the samples in blue were recorded when hurricane
Sandy was happening in NYC from Oct 29th to Oct 30th,
2012; the samples in red were recorded during normal days.
Inspecting the blue neighborhood, one can find the high
values of wind associated with very low values of taxi, while
in the red neighborhood, records are more diverse with low
wind values associated with a wider range of taxi values.
The blue neighborhood is clearly showing a more apparent
pattern, and thus, yielding a higher MI as shown later.

Choosing the value of k: The KSG method requires a
free parameter k, i.e., the number of nearest neighbors to be
searched for each data point. While there is no theoretical
basis for selecting an optimal value for k, in this work, we
use our real data sets to tune this parameter until a k value
that provides a stable estimation of MI is found. In Section
IV, we discuss the result of this tuning process.

III. SEARCHING FOR CORRELATIONS USING ADAPTIVE
SLIDING WINDOW

For time series data, the dependency can either hold for
the entire data series, or only hold in certain periods (as the
example of taxi trip and wind speed). As we aim to look
for correlations between temporal data sets, we develop a
search algorithm based on a sliding window method that
can adaptively and efficiently compute MI in a incremental
manner. The algorithm returns a set of windows of different
sizes that show the time durations where considered vari-
ables may hold interesting or significant correlations.

A. Using MI to measure correlations in time series

Let X = {xt}Nt=1 and Y = {yt}Nt=1 be two finite time
series of equal length N . The joint time series between them
is (X,Y) = {(xt, yt)}Nt=1. Since X and Y are sampled
in time, they are either discrete or discretized. Thus the
frequencies of combinations of (x, y) pairs can be computed
by counting the number of times each pair occurs in the

Figure 2. Time series of Taxi Trips and Traffic Speed

Figure 3. Time series of Taxi Trips and Wind Speed

data, then used to estimate MI. Through estimating the MI of
(X,Y), we want to seek answers for the following problems:

Problem 1: Determine if variables X and Y are overall
correlated and the strength of their relationship if it exists.

Problem 2: If overall correlation does not hold for X and
Y , then search for time windows wij = [ti, tj], 1 ≤ i < j ≤
N , where X and Y are highly correlated.

A positive MI between variables over the entire data series
indicates that they are correlated in general. Thus, Problem
1 can be answered by computing MI for the entire (X,Y)
data series. The relationship strength is determined by the
MI magnitude, where a larger value corresponds a stronger
relationship. As an example, considering two variables: the
number of taxi trips (X) and the traffic speed (Y) in NYC,
shown in Fig. 2 (the data are taken from NYC Open data
sets). We might observe that whenever the number of taxi
trips xi is high, traffic speed yi is low and vice versa,
implying a pattern that a high number of taxi might slow the
traffic. Thus, if we ever wonder whether these two variables
have any correlations, we can take their entire time series
data and compute the MI. If it is positive, then there are
correlations between these variables. On the other hand,
consider taxi trips and wind speed (Fig. 3), there is no clear
patterns between these two except for a period from Oct 29th

to Oct 30th, where we observe a significant drop in taxi trips
associated with an extreme high wind speed. This period is
when hurricane Sandy was causing abnormally high winds in
NYC. Hence, we may conclude that the correlation between
these two might not exist during regular days, but only
in extreme events. In this case, MI of the pair (taxi trips,
wind speed) might be very low during regular days but
significantly high in the time window [Oct 29th, Oct 30th].
Looking for these temporal windows throughout the time
series is our objective in answering Problem 2.

B. Adaptive sliding window search

Our goal now is to efficiently search for correlations over
time series data sets. One possible approach is to compute
MI for every possible segment of the data. However, this is
computationally expensive and requires a large amount of
memory. To address this issue, we adaptively slide windows
of different sizes over the data series to iteratively filter data
portions that might contain interesting correlations. Next, we
describe the terminology used in our algorithm.
Time window contains a set of timestamped data points
collected over a continuous time period and are sorted in
chronological order.
Window granularity is a temporal unit representing time
scale of a window. For example, a window containing data
for an entire year has a one-year granularity; a window
containing data of just 10 days has a 10-day granularity.
Granularity size represents the number of data points
contained in one unit of granularity. This size depends on
the data resolution. For example, if granularity units are
measured in days and the data resolution is in hours, i.e.
a sample is collected every hour, the granularity size is 24.
Window size is number of data points contained in a
window and is computed by taking the product of window
granularity and granularity size. A window must have
proper size, i.e., contain enough samples, in order to report
any significant correlations.
Threshold σ is a non-negative real number representing the
minimum value of MI. A window with an MI ≥ 0 is said
to contain significant correlations.

The adaptive sliding window search procedure is com-
posed of several layers. At the highest level, the search
is performed in a hierarchical top-down manner: it starts
with the largest granularity and iteratively reduces the size if
significant correlations are not found, thus, creating different
window sizes. At each level, windows of the same size
are moved along the time series as MI is computed for
each of them. The MI computation for consecutive windows
is performed incrementally to minimize the computational
cost. In the following, we detail each computation step.

1) Top-down search using adaptive window sizes: A
main benefit of the top-down search is to minimize the
search space. Rather than computing MI for all possible
windows, it assumes that data sets are only well-correlate
at a certain window size or above. This assumption is
often valid, for example when correlation links to weather
events which only last for some time. We allow users to
define the maximum and minimum granularity they want
to perform on the data. Then starting with the maximum
granularity, data are partitioned into windows of the same
size. Two consecutive windows can be disjoint or overlapped
depending on whether correlation exists in one of them
(details are described in the next section). MI is computed
for each window and is compared against the threshold σ.

Windows that hold significant correlations (i.e., MI ≥ σ) are
selected. After the first scan, a set of windows which pass the
threshold test are returned and another set contains windows
that do not pass (called left out data) will be used for the
next scan, but with a smaller granularity. The granularity
decreasing step is also customizable. The search stops when
we exhaust all data points or the granularity reaches the
minimum size. Clearly, the top-down approach provides the
user with flexibility to test the dependency in different time
scales. It can test the overall correlation of variables by
setting the maximum granularity to cover the entire data
series, while decreasing the granularity to a smaller scale
helps to uncover correlations in time windows. Algorithm 1
illustrates this hierarchical search.

Algorithm 1 Adaptive top-down search
1: Inputs: < x, y >: pair of time series variables
2: Parameters: max g: maximum granularity, min g: minimum granularity,

size g: granularity size, step: granularity decreasing step
3: current g = max g
4: left out = < x, y >
5: while left out AND current g > min g do
6: (windows, left out) = search windows(left out, size g, current g)
7: current g = current g - step
8: end while
9: return windows

2) Sliding window with filtering: This step works at each
granularity layer. At each granularity layer, the procedure
search windows moves windows of the same size along the
data series and filter those that hold significant correlations.
We illustrate this movement in Fig. 4.

w1

w2
w3

s_1s_2 e_1e_2
s_3 e_3

Figure 4. Sliding window search with filtering

Each window wi is identified by the start index s i and
end index e i (indicating the first and the last data point of
wi). Since each data point is associated with a timestamp,
the start index and end index also indicate the start time and
end time of the window.

Initially, the search starts from the leftmost of the data
series, and compute MI for the first window w1 = [s 1, e 1].
Assuming that mi1 < σ, then w1 does not hold signifi-
cant correlation and its indices [s 1, e 1] are inserted into
left out list. Next, the search shifts to the right, creating the
second window w2 = [s 2, e 2]. The shifting step from s 1
to s 2 indicates how far the window is moved every time
the previous window does not pass threshold test, and is also
user-defined. The MI is computed for data points belonging
to w2. Supposing that this time, w2 passes the threshold test.
In this case, the indices [s 2, e 2] are inserted into windows

Left
Out
Data

Left
Out
Data

Left Out
Data

s_1 e_1
s_2 e_2

s_i e_i

Figure 5. Time series after the first scan

list, and at the same time, the current entry in left out list
(i.e., [s 1, e 1]) is updated to [s 1, s 2], indicating only the
data portion from s 1 to s 2 is left out. Next, the search
moves on to the third window w3 = [s 3, e 3] with s 3 is
right after e 2 of w2. The procedure repeats for the rest of
the data series.

Fig. 5 illustrates the results after the scanning. A set
of non-overlapping windows that pass the threshold test
is stored in windows list, and a set of disjoint partitions
containing left out data is stored in left out list. These left
out data partitions will become the inputs for the next scan
with reduced granularity.

3) Boxed-assisted algorithm with incremental computa-
tion: Up to this point, we have illustrated how sliding
window can be applied to the search for correlations in time
series, progressively. In this section, we describe how to
compute MI for each window in an incremental manner.

As mentioned earlier, the KSG estimator aims to estimate
MI based on the neighborhood population. For each data
point i, it counts marginal points within k-nearest distance.
Different methods can be used to search for k-nearest
neighbor (e.g., k-D tree, boxed-assisted, projection method
[8]). We choose to use the boxed-assisted method because
it outperforms other methods for low dimensional data [8].

In the sliding window algorithm, computing MI for each
window by visiting all data points is considerably expensive.
Noticing that there could be many overlapping data between
consecutive windows, we propose a method that is able
to track changes across windows to reuse computation of
shared data points. The shift from w1 to w2 in the sliding
window would result in three different sets of data: (1) data
points from s 1 to s 2 in w1 but are removed in w2; (2)
overlapping data from s 2 to e 1; and (3) newly added data
from e 1 to e 2. Our optimized boxed-assisted algorithm
can minimize the computation of the old data ([s 1, s 2])
and the new data ([e 1, e 2]) in such a way that only the
computation for new or affected data has to be performed.

In standard boxed-assisted algorithm, the search space is
divided into equal size boxes. Each data point is projected
into exactly one box. Each box maintains a list of points
within its bounds. When searching for k-nearest neighbors
of point i, the box containing point i is identified first. The
search then extends to the neighborhood from the reference
box until k nearest points are found. Next, the distances
(in each dimension) to the kth-neighbor are determined

and the marginal points are computed by counting the
number of points within these distances. In addition to the
box-array structure in the standard version, we employ a
supplementary storage to keep track of previous computation
results. For each data point i, we add 3 components to
its data structure to store: (1) the index of the kth-nearest
neighbor, (2) the distances in each dimension to its kth-
nearest neighbor, (3) the number of marginal points in
each dimension. To track changes caused by old and new
data, we define an influenced region for each data point i.
An influenced region of point i is a rectangular bounding
box Ri = (li, ri, bi, ti) where li, ri, bi, ti are its left, right,
bottom, top-most indices and are computed by using indices
of the box where point i is located plus/minus (+/−)
the distance d to its kth-neighbor. The influenced region
maintains an area where any point j either falling into or
being removed from this region will potentially affect point
i. The effect can be either changing its kth-neighbor or its
marginal counts. In this case, point i requires a re-evaluation.

With the introduction of influenced regions, the computa-
tion for each data point i is enhanced as follows. If i is:

• A new point: (Step 1.1) Follow the standard algorithm
to compute its marginal points. (Step 1.2) Re-evaluate
every point j whose influenced region contains i.

• An old (removed) point: (Step 2.1) Remove point i and
its corresponding data structures. (Step 2.2) Re-evaluate
every point j whose influenced region contains i.

• In the overlapping region, no computation is required.
As the result of this incremental computation method, for
each window a minimum searching region is determined
containing only new points and a minimum updating region
containing only points affected by adding new points and
by removing old points.

Space complexity: The space complexity of standard
boxed-assisted algorithm is O(n) where n is number of
samples in a window. With m additional data structures used
in the optimized version, the space complexity is O(mn),
thus linear in the data size.

Time complexity: With a standard boxed-assisted al-
gorithm, the time to compute MI for each window is
O(n log(n)) where n is the window size. The sliding win-
dow approach with w windows results in the complexity of
O(wn log(n)). With the incremental computation, however,
only the computation and updates for new and affected
points, respectively, are needed. If the data are sparse, i.e,
only few are affected through insertions or removals of
points, the time complexity would be much smaller.

Setting the threshold σ We provide users the flexibility
to specify the threshold σ, depending on the requirement
of relationship strength. The value of σ decides how many
windows will show up in the results. Usually, a larger value
of σ results in fewer windows. One way to set σ is to base
on data coverage. Data coverage represents the amount of
data covered in the selected windows, and is computed as:

Data Coverage =
#samples in selected windows

#total samples
(3)

Data coverage can be interpreted as the percentage of
interesting data points over the entire data series. Data
coverage of 20% implies that we want to look for significant
correlations in 20% of the entire data series.

C. Exploiting parallelism
To accelerate the search process, we exploit the paral-

lelism of big data platform using Apache Spark. We partition
input data into overlapping chunks, where each is processed
as a separate process in the Spark cluster. The overlapping
portion ensures that the search is continuous between chunks
and equals to the shifting step of two consecutive windows.

Algorithm 2 illustrates the parallel procedure. In line 2,
data indices are partitioned into overlapped chunks. Each
chunk contains w windows and two consecutive chunks are
overlapped by a shifting step. Line 3 maps each partition
into a node in the Spark cluster and the top-down search
procedure is applied to it (lines 5-7).

Algorithm 2 Paralellise Top Down Search
1: Parameters: shift: shifting step, size: window size, w: number of windows in

each chunk, N: total number of samples
2: rdd = sc.parallelize([(i-shift,i+w*size) for i in xrange(0,N,w*size)])
3: rdd.mapPartitions(compute MI)
4:

5: def compute MI(chunks):
6: for chunk in chunks:
7: top down search(chunk)

IV. EXPERIMENTAL EVALUATION

We evaluate our method using NYC Open Data Sets [1].
For its effectiveness and performance, we assess the correla-
tion of the extracted windows, and the scalability of running
against different data sizes, respectively.

A. Data and Infrastructure

The NYC Open Data Sets: include spatial-temporal data
containing information related to different activities which
took place in New York City. Table I shows the summary
of data sets. The data preprocessing and analysis were
conducted using the data facility at our research center with
a 1200-core cluster running Cloudera Data Hub 5.4 and
Apache Spark 1.6. The cluster consists of 20 high-end nodes,
each with 64 cores, 256GB of RAM, and 24TB of storage.

B. Data Cleaning and Preprocessing

Data cleaning aims to remove entries with no reported
value and duplicated entries. The missing value can be in
the form of null (empty) or a default value. For example,
weather data use default values (e.g., 9999 or 9999.99) to
record missing entries while the missing values in the taxi
data is empty. The duplicate entries are removed by checking
entry ids to ensure the uniqueness of reported information.

After the cleaning process, the preprocessing step takes
place to put data into the form of variables that we are

interested in. This is done by using available metadata
associated with each data set. For example, the taxi data
set consists of 22 attributes, however, we are interested in
the number of taxi trips, which is not an attribute. Thus, we
compute this variable by counting the number of taxi trips
under different time scales, e.g., minute, hour, day, week
etc. To deal with the large volume of raw data, we perform
the preprocessing process using our Spark cluster. It took
approximately 45 mins to process the taxi data set and less
than 10 mins to process other data sets.

C. Design of Experiments

Variables and Resolutions: From the data sets in Table I,
we extract variables listed in Table II, considering various
time resolutions (D: Day, H: Hour, 15M: 15 Minutes).

Parameters setting: Before applying the search algorithm,
we need to assign values to several parameters. We report
the selection of their values as follows.

• Value of k: we use different k to compute MI for
different pairs of variables, e.g., k is in the range from
1 to 20 with step 1. We found that with our data sets,
k = 6 gives the most stable results comparing to others.
The MI changes dramatically between k = 1 to k = 4.
Then it is more stable with k in the range from 5 to
10. Thus, we selected k = 6 for our search method.

• σ threshold: this parameter ties up closely with the
nature of the relationship between variables. For those
that are naturally correlated, higher or lower σ results
in lower or higher data coverage. For those that are
naturally not correlated, even low σ still results in very
low coverage. Though it is not always the case, a σ
resulting in 20% data coverage is used for the majority
pairs of variables in this work.

• Window granularity: to test the overall correlation, we
set the granularity to year to cover the entire data
series. To search for time windows, we start with the
month granularity, then split into day and then hour.

D. Running Experiments

Experiments Descriptions: We apply our search algorithm
for each pair of variables that we are interested in. We use
the same resolution for variables of the same pair. The search
is performed on the Spark cluster. Our Spark’s application
is written in Python, however, the MI computation code is
written in C for performance reason. In order to commu-
nicate between the application and the MI computation in
worker nodes, we use the Spark’s pipe() command.

Performance and Scaling: We report here the execution
times of our method comparing to a brute force version
on different data sizes. A brute force search will compute
the MI for every window without using incremental com-
putation. To have a fair comparison, we only report the
results in which the two algorithms run on one node. We
do not compare the parallel implementation as parallelism

Table I
SUMMARY OF NYC OPEN DATA SETS

Data sets Size #Attributes #Records Time Duration Description

Taxi Trips 115 GB 22 900 M 2009-2014 Information of taxi trips in the city
Traffic Speed 18 GB 4 400 M 2009-2012 Record the speed of vehicles at certain location and time in NYC
Collisions 49 MB 22 400 K 2012-2014 Record the incidents happened in NYC
Weather 318 MB 1008 65 K 2010-2014 Contain information of weather condition in the city with more than 1000 attributes.
311 Complaints 600 MB 10 80 M 2003-2014 Include direct complaints from citizens from 311 telephone.

Table II
VARIABLES AND RESOLUTIONS

Variables Resolutions Description
#Taxi Trips D, H, 15M Number of taxi trips
Average Taxi Fare D, H, 15M Average fare of taxi trip
Average Trip Duration D, H, 15M Average duration of taxi trip
Average Wind Speed D, H, 15M Average speed of wind
Average Rain Precip. D, H, 15M Average amount of rainfall
Average Visibility D, H, 15M Average distance of visibility
Average Traffic Speed D, H, 15M Average speed of traffic
Injured Motorists D, H Number of injured motorists
Killed Motorists D, H Number of killed motorists
Injured Cyclists D, H Number of injured cyclists
Killed Cyclists D, H Number of killed cyclists
Injured Pedestrians D, H Number of injured pedestrians
Killed Pedestrians D, H Number of killed pedestrians
Collisions D, H Number of collisions
311 Complaints D, H Number of complaints

Table III
EXECUTION TIMES OF OPTIMIZED SLIDING WINDOW ALGORITHM AND

BRUTE FORCE ALGORITHM

Data Size (#Samples) Brute Force Optimized SW
1000 3.97 sec 3.15 sec
4000 32 sec 16 sec
8000 95 sec 40 sec

12000 4 mins 9 sec 2 min 3 sec
16000 11 mins 32 sec 6 mins 25 sec
18000 13 mins 35 sec 7 mins 16 sec
20000 15 mins 34 sec 8 mins 45 sec
25000 20 mins 52 sec 10 mins 51 sec
31000 27 mins 50 sec 12 mins 2 sec

only divides data into smaller sizes. As shown in Table III,
our implementation can achieve a speedup of 2 with the
optimized version, and the larger the data size, the larger
the speedup. Note that the speedup will change depending
on the data distribution. For example, if the data series are
well-correlated, the search will stop earlier while if the data
are not well-correlated, the search will need longer to search
for significant windows.

E. Summary of Correlation Findings

We report our findings when searching for correlations
in the NYC Open data sets. Due to space limitation, we
will plot only a few extracted windows when explaining
our findings. We compare our method and findings to those
found in [9]. The work in [9] uses a topology-based approach
to represent and identify relationships among the data sets.

1) Weather and Taxi: The findings listed here come from
variables extracted from Weather and Taxi data sets.

Figure 6. Taxi Trips vs. Rain Precipitation

Taxi Trips and Rain Precipitation: We search for corre-
lation between the number of taxi trips and average rain
precipitation in an hour resolution. In certain extracted win-
dows, we found a negative relation between two variables,
shown in Fig. 6. Two highlighted windows show a drop in
the taxi trips associated with abnormally high rain. To better
understand the windows, we look into their data. The first
window last for two days, from 29th Oct 2012 to 30th Oct
2012, the period when hurricane Sandy approached NYC.
In the second window, however, the drop of the taxi trips
happens at midnight. Noticing that taxi trips have a daily
pattern, showing a high number of trips during rush hours
(7AM-9AM, 1PM-3PM, 6PM-8PM) and a low number of
trips in non-rush hours, especially at midnight. Thus, the
association between high rain and low taxi trips seems likely
to be coincident in the second window.

Moreover, it should also be noted that there is a short
period on the far left of Fig. 6, where an abnormally high
rain is also linked with a drop of the taxi trips. This window,
however, is not shown in our search results. We found that
the abnormal increase in precipitation occurred in a very
short time period. Only 7 data samples were reported in this
period, which were not enough to hold significant correlation
and, thus, is not captured by our search.

The findings in [9] report a strong negative relationship
between the two variables considered here: ”When rain
precipitation is high, number of taxi trips is low, implies
the difficulty to find a taxi in rainy days”. In our findings
however, it appears that this pattern only holds in very
extreme events, such as during a hurricane, in which many
other factors may combine together with the measured

Figure 7. Taxi Trips vs. Wind Speed
Table IV

TOP RANKINGS WINDOWS BETWEEN TAXI AND WIND SPEED

From To MI Event

2012-Oct-29 2012-Nov-02 0,651174 Sandy Hurricane
2012-Jul-27 2012-Jul-28 0,604444 Tornado hits NYC
2012-Jan-20 2012-Jan-21 0,578166 Snow storms
2012-Nov-10 2012-Nov-11 0,542242 Snow storms
2012-Dec-23 2012-Dec-24 0,493842 Storms
2012-Nov-06 2012-Nov-07 0,487898 Snow storms
2012-Aug-28 2012-Aug-29 0,471387 Hurricane Irene
2012-Sep-08 2012-Sep-09 0,424399 Tornado
2012-Sep-19 2012-Sep-20 0,420836 Storms

rainfall to cause a drop in the taxi trips.
Taxi Trips and Wind Speed: We test the pair of (taxi

trips, wind speed) variables, in both an hour and 15 mins
resolutions. We found a negative relationship between these
two in both resolutions. When the wind speed readings were
exceptionally high, major drops in taxi trips occurred (e.g.
Fig. 7). Our finding is similar to the results reported in [9]
indicating a negative relationship between the taxi trips and
the average wind speed.

However, the discovered relationship is also linked with
very extreme events. To test our hypothesis, we performed
further analysis by ranking extracted windows according to
their MI magnitude and select the top windows. As expected,
many of these top windows were associated with extreme
events that happened in NYC. Table IV reports these events
information, which we found through news feed, along with
each highly ranked time period.

Taxi Fare and Rain Precipitation: A finding reported in [9]
suggests a positive relationship between Taxi Fare and Rain
Precipitation (taxi drivers increase earnings when it rains).
The phenomenon was explained due to the fact that taxi
drivers were the target earners. However, we experienced
different results. We found a window where the two are
negatively related, shown in Fig. 8(b), whose time coincides
with the hurricane Sandy. Whereas in other periods, as for
example in Fig. 8(a), when the two windows (highlighted)
are found at times when the rain was higher than normal,
but the taxi fare was still relatively similar to other periods.

Taxi Trips and Visibility: We found a correlation between
the number of taxi trips and visibility. During periods when

(a) (b)
Figure 8. Taxi Fare vs. Rain Precipitation

Figure 9. Daily Patterns of Taxi Fare and Traffic Speed

the visibility is low, there is a shortage of taxi trips. This
may be due to the increased danger of driving under this
condition. This result is similar to the finding in [9]. In
addition, our findings also suggests that this phenomenon
mostly happens at midnight, when we think could be due to
other factors beside visibility, causing a shortage of taxis.

2) Taxi and Traffic Speed: We analyze variables extracted
from the Taxi and Traffic Speed data sets. We compute their
MI using the entire data series of the year 2012 in an hour
resolution. We found a dependency between taxi trips and
traffic speed with a significantly high MI. We then split
the data into daily windows, and compute the MI for each
day. The results also yield a high MI, implying that the
variables might correlate with a daily pattern. This confirms
the finding in [9], which also reports a strong relationship
between the two variables, even in regular days.

We test another relationship between the taxi fare and the
traffic speed in an hour resolution. We obtain a relatively
high MI for the entire data series in 2012. This implies a
correlation between the two variables. Particularly, when we
split the yearly data into daily pattern, we gain even higher
MI, implying the correlation is stronger in a daily pattern.
Fig. 9 shows the pattern of this correlation, where the traffic
speed and the taxi fare were both low and high at similar
times. This suggests that taxi drivers are likely to earn less
with a slow traffic, similar to the findings in [9].

3) Collisions and Weather: We analyze the Collisions
and Weather data sets. One of the findings in [9] reports a
strong positive relationship between rainfall and the number
of motorists killed, as well as the number of injured pedes-
trians. However, we could not find these correlations using
our method. The MI values between these pairs of variables

Figure 10. Rain vs. Injured Pedestrian

Year	2012	

Daily	

Year	2012	

Window	

Year	2012	

Window	

Year	2012	

Window	

-0.1	

0.1	

0.3	

0.5	

0.7	

0.9	

1.1	

1.3	

1.5	

Taxi	-	
Traffic		

Taxi	-	
Traffic		

Taxi	Fare	-	
Traffic		

Taxi	Fare	-	
Traffic		

Taxi	-	
Wind		

Taxi	-	
Wind		

Taxi	-	Rain	Taxi	-Rain	

M
ut
ua

l	I
nf
or
m
a?

on
	

Figure 11. Strength of Different Relationships

are almost zero, and we could not extract any significant
windows from the data series, even with a low σ, across
all resolutions. We made further investigations by manually
inspecting the results, e.g. the plots in Fig. 10. We were not
able to confirm a clear pattern between these variables.

4) Collisions and Taxi: We study variables extracted from
the Collisions and Taxi data sets. Similar to the previous
experiment, our method did not find a correlation between
the taxi trips and the number of collisions, where [9] reports
a strong positive relationship.

5) Collisions and 311: We test the relationship between
number of collisions and number of 311 complains. A find-
ing in [9] suggests that there is a strong positive relationship
between these two variables. However, we could not find this
correlation using our method.

F. Verify the Strength of the Relationships

We verify the relationship strength between different pairs
of variables by comparing their MI magnitude. The larger
its magnitude, the stronger the relationship. Fig. 11 shows
some of them. For taxi trips and traffic speed, the MI is high
using entire data series of the year 2012 and significantly
high using daily data. Similarly for taxi fare and traffic
speed. Whereas for taxi trips and wind speed, or taxi trips
and rain precipitation, the overall MIs are almost zero but
significantly higher in time windows.

V. RELATED WORK

Understanding the dependency between data sets is one
of the most desirable things one has when dealing with
data. Such understanding can help forecast trends, make
predictions and uncover root causes of certain phenomena.
However, this is a difficult problem. In the past, many
research works (e.g., [10], [11], [12]) have used traditional
statistical metrics such as covariance, correlation coefficients

(Pearson, Spearman) to identify correlations among data.
These metrics, however, are limited to linear dependency. As
data sets today are growing larger, more diverse and com-
plex, the problem becomes more challenging and requires
new techniques or approaches to address. Recent works such
as [13], [14], [15], [16] attempt to approach the problem
from high level. Sarma et al. [13] define the concept of
relatedness (based on the results of queries) to find related
tables in databases. In [14], Pochampally et al. propose to
model correlations between different data sources using joint
precision and joint recall as indicators. Whereas the work
in [15] relies on the history and schema of data sets to map
and link them together. In [16], Roy et al. use the concept of
intervention (i.e, changes in the values of inputs affect the
outputs) to look for causal explanation for the answers of
SQL queries. These works differ from our approach as we
aim to look for relationships not only between data sets but
also the time windows where the data are well-correlated.

Recently, Chirigati et al. [9] proposes a topology-based
framework to identify relationships between spatial-temporal
data sets. The notion of topological features, whose in-
terestingness is captured by critical points (maximum and
minimum), is defined to represent the data sets and iden-
tify relationships between them. The technique is able to
find both regular relationships and relationships at extreme
events. Our work aims to achieve similar goals, but at
the same time, trying to pick out the exact time windows
where the correlations occur. Our method should be used
in conjunction with their work to create a comprehensive
framework in data exploratory. Indeed, in this paper, we
closely compare our findings to those in [9]. There are some
differences in the findings between the two methods, thus,
a deeper analysis in the future could be helpful to uncover
those differences and better explain the results.

Regarding the use of mutual information, the metric has
been broadly used in many domains to achieve different
goals, e.g., features selection ([17], [18]), clustering and
mining ([19], [20]), network inference and construction
([21], [22]). In term of searching for correlations, the work
in [23] has been used time-delayed mutual information to
interpret temporal correlations in glucose measurements time
series data. Chen et al. [24] use mutual information to dis-
cover spatial temporal dynamic of the magnetosphere during
geospace storms. However, these works do not consider the
context of big and diverse data sets where correlations can
hold in entire data sets or only in specific time durations.

In the context of big data, the use of mutual information
is relatively new. A recent work of Su et al. [25] proposes a
framework and a set of algorithms to analyze relationships
of massive scientific data sets. They also use mutual infor-
mation as one of the metrics to measure correlations between
queries. However, they only consider overall correlations
and focus the work on data indexing to efficiently compute
correlation in parallel and distributed setting.

In the context of data streaming, in another recent work
[26] Keller et al. propose an algorithm to estimate MI for
data streams. It also uses the KSG method and proposes a
data structure called query anchor to keep track of marginal
counts. A main difference in our work is that we use a
top down approach to minimize the search space, while at
the same making sure to capture significant correlations. In
particular, we introduce influenced regions to keep track of
changes in the data, a technique that is not used in [26].

VI. CONCLUSION

In this paper we present a method based on information
theory to study the temporal relationships in the context
of big data sets. With the presented results, we believe
that the approach opens a new and important perspective
on how we should deal with big data. In an era where
data are massive, diverse and complex, a wise treatment
for it is not to process data blindly but to select the most
interesting and informative data portions. By reducing the
amount of data that potentially are not informative, different
mining and learning algorithms can be beneficial in terms
of computation efficiency and accuracy.

In the future, we intend to expand our work to capture
the spatial components and discovering relationships across
more than two variables. We also plan to perform a deeper
analysis of our results and [9] to validate the different
findings between the two methods.

VII. ACKNOWLEDGEMENTS

We would like to thank Prof. Barbara Pernici for providing
insightful comments and discussions throughout the work.
We also thank the authors of [9] for making their data
available and sharing valuable insights with us. This work
was supported in part by a CUNY IRG Award.

REFERENCES

[1] Nyc open data. [Online]. Available:
https://nycopendata.socrata.com

[2] T. M. Cover and J. A. Thomas, Elements of information
theory. John Wiley & Sons, 2012.

[3] D. R. Brillinger, “Some data analyses using mutual infor-
mation,” Brazilian Journal of Probability and Statistics, pp.
163–182, 2004.

[4] S. de Siqueira Santos, D. Y. Takahashi, A. Nakata, and
A. Fujita, “A comparative study of statistical methods used
to identify dependencies between gene expression signals,”
Briefings in bioinformatics, p. bbt051, 2013.

[5] L. Paninski, “Estimation of entropy and mutual information,”
Neural computation, vol. 15, no. 6, pp. 1191–1253, 2003.

[6] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating
mutual information,” Physical review E, vol. 69, no. 6, 2004.

[7] A. Papana and D. Kugiumtzis, “Evaluation of mutual infor-
mation estimators for time series,” International Journal of
Bifurcation and Chaos, vol. 19, no. 12, pp. 4197–4215, 2009.

[8] M. Vejmelka and K. Hlaváčková-Schindler, “Mutual infor-
mation estimation in higher dimensions: A speed-up of a k-
nearest neighbor based estimator,” in ICANNGA Proc.

[9] F. Chirigati, H. Doraiswamy, T. Damoulas, and J. Freire,
“Data polygamy: the many-many relationships among urban
spatio-temporal data sets,” in SIGMOD Proc., 2016.

[10] W. E. Dean Jr and R. Y. Anderson, “Application of some
correlation coefficient techniques to time-series analysis,”
Journal of the International Association for Mathematical
Geology, vol. 6, no. 4, pp. 363–372, 1974.

[11] H.-C. Huang, S. Zheng, and Z. Zhao, “Application of pear-
son correlation coefficient (pcc) and kolmogorov-smirnov
distance (ksd) metrics to identify disease-specific biomarker
genes,” BMC Bioinformatics, vol. 11, no. 4, p. 1, 2010.

[12] G. Chamberlain, “Analysis of covariance with qualitative
data,” 1979.

[13] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu,
R. Xin, and C. Yu, “Finding related tables,” in SIGMOD
Proc., 2012, pp. 817–828.

[14] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava, “Fusing data with correlations,” in SIGMOD
Proc., 2014.

[15] A. Alawini, D. Maier, K. Tufte, and B. Howe, “Helping
scientists reconnect their datasets,” in SSDBM Proc., 2014.

[16] S. Roy and D. Suciu, “A formal approach to finding expla-
nations for database queries,” in SIGMOD Proc., 2014.

[17] H. Peng, F. Long, and C. Ding, “Feature selection based
on mutual information criteria of max-dependency, max-
relevance, and min-redundancy,” IEEE Trans. on pattern
analysis and machine intelligence, vol. 27, no. 8, pp. 1226–
1238, 2005.

[18] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada,
“Normalized mutual information feature selection,” IEEE
Trans. on Neural Networks, vol. 20, no. 2, pp. 189–201, 2009.

[19] N. Slonim, G. S. Atwal, G. Tkačik, and W. Bialek,
“Information-based clustering,” Proceedings of the National
Academy of Sciences of the United States of America, vol.
102, no. 51, pp. 18 297–18 302, 2005.

[20] Y. Ke, J. Cheng, and W. Ng, “An information-theoretic
approach to quantitative association rule mining,” Knowledge
and Information Systems, vol. 16, no. 2, pp. 213–244, 2008.

[21] P. E. Meyer, K. Kontos, F. Lafitte, and G. Bontempi,
“Information-theoretic inference of large transcriptional reg-
ulatory networks,” EURASIP journal on bioinformatics and
systems biology, vol. 2007, no. 1, pp. 1–9, 2007.

[22] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins,
G. Stolovitzky, R. D. Favera, and A. Califano, “Aracne: an
algorithm for the reconstruction of gene regulatory networks
in a mammalian cellular context,” BMC bioinformatics, vol. 7,
no. Suppl 1, p. S7, 2006.

[23] D. J. Albers and G. Hripcsak, “Using time-delayed mutual
information to discover and interpret temporal correlation
structure in complex populations,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 22, no. 1.

[24] J. Chen, A. Sharma, J. Edwards, X. Shao, and Y. Kamide,
“Spatiotemporal dynamics of the magnetosphere during
geospace storms: Mutual information analysis,” Journal of
Geophysical Research: Space Physics, vol. 113, no. A5, 2008.

[25] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W.
Shen, “Supporting correlation analysis on scientific datasets
in parallel and distributed settings,” in HPDC Proc., 2014.

[26] F. Keller, E. Müller, and K. Böhm, “Estimating mutual
information on data streams,” in SSDBM Proc., 2015.

