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Abstract—As urban populations grow, cities face many challenges related to transportation, resource consumption, and the
environment. Ride sharing has been proposed as an effective approach to reduce traffic congestion, gasoline consumption, and
pollution. However, despite great promise, researchers and policy makers lack adequate tools to assess the tradeoffs and benefits of
various ride-sharing strategies. In this paper, we propose a real-time, data-driven simulation framework that supports the efficient
analysis of taxi ride sharing. By modeling taxis and trips as distinct entities, our framework is able to simulate a rich set of realistic
scenarios. At the same time, by providing a comprehensive set of parameters, we are able to study the taxi ride-sharing problem from
different angles, considering different stakeholders’ interests and constraints. To address the computational complexity of the model,
we describe a new optimization algorithm that is linear in the number of trips and makes use of an efficient indexing scheme, which
combined with parallelization, makes our approach scalable. We evaluate our framework through a study that uses data about 360
million trips taken by 13,000 taxis in New York City during 2011 and 2012. We describe the findings of the study which demonstrate
that our framework can provide insights into strategies for implementing city-wide ride-sharing solutions. We also carry out a detailed
performance analysis which shows the efficiency of our approach.

Index Terms—taxi ride sharing, simulation, shortest-path index, scalability, urban computing.
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1 INTRODUCTION

DUE to the steady growth in urban populations [1],
cities now face huge challenges related to transporta-

tion, resource consumption, and pollution. Ride sharing has
been proposed as a strategy to decrease road traffic and
gasoline consumption [2], while at the same time serving
the transportation needs of city dwellers. In large cities,
there is substantial unused taxi capacity that can be filled
by ride-sharing services. Consider, for example New York
City (NYC): each day, taxi cabs make 500 thousand trips
and serve 600 thousand passengers; this translates into an
average occupancy rate of only 1.2 passengers per trip [3].
Private companies such as Uber, Lift, Via, Bandwagon and
Cab With Me already provide ride-sharing services. How-
ever, they represent a small percentage of the market.

A wide deployment of ride sharing requires a better un-
derstanding of its tradeoffs. This is challenging since there
are multiple stakeholders with different, and sometimes
conflicting, interests. Governments want less traffic and pol-
lution; taxi companies want to maximize their profits; and
passengers would like to reach their destination quickly and
cheaply. To design an effective policy, these interests need
to be considered. Early approaches to this problem have
been primarily devised on the basis of survey data [4] and
analysis of psychological incentives [5], [6], [7]. Ride sharing
has also been modeled as an optimization problem whose
objective is to identify optimal ride-sharing schedules [8],
[9], [10], [11], [12], [13]. However, these approaches focus
on small-scale problems, such as sharing at airports, since
large-scale optimization is often computationally infeasible.
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The availability of large volumes of taxi trip data creates
new opportunities to apply data-driven approaches to this
problem. Santi et al. [14] proposed a graph-based model that
computes optimal sharing strategies for trips and contains
two key parameters: the maximum number of trips that can
be shared and the maximum delay customers are willing
to tolerate. While this allows the study of sharing benefits
as a function of passenger inconvenience, the model has
important limitations. Notably, it is intractable for scenarios
that consider the sharing of three or more trips and it
assumes that all trips are known in advance. Ma et al. [15],
[16] introduced T-Share, a ride-sharing dispatch system that
serves real-time requests issued by passengers and gener-
ates schedules that reduce the total travel distance. This
system, however, was not designed to support simulations:
it neither provides the necessary parameters to simulate
different scenarios, nor does it scale to very large data sets.

We propose STaRS (Simulating Taxi Ride Sharing), a
data-driven simulation framework that enables the analysis
of a wide range of ride-sharing scenarios. Unlike [14], in
our model, trips need not be known in advance: STaRS
supports the simulation of real-time ride sharing which
serves unplanned trips, and fits well the models using dif-
ferent vendors, such as Yellow cabs and Uber. By modeling
taxis and trips as distinct entities, and by providing a rich
set of variables, STaRS enables the study of a wide range
of realistic scenarios that take into account the needs and
constraints of multiple stakeholders. These include different
customer preferences (e.g., maximum number of additional
stops and wait time), and taxi-specific constraints often
dictated by ride-sharing vendors, for example, the number
of passengers on a per-taxi basis and maximum number
of shared trips. This flexibility comes at a cost: assigning
trips to taxis in real-time is computationally expensive. We
describe a new optimization algorithm that is linear in the
number of trips and makes use of an efficient indexing
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Fig. 1. Our taxi ride-sharing model consists of three main entities: taxis,
passengers and a scheduler. Given a trip request issued in real-time,
our model assigns this trip to a taxi in such a way to optimize a given
cost function while at the same time respecting a set of pre-defined
constraints.

scheme, which combined with parallelization, makes our
approach scalable.

We evaluate the efficiency and effectiveness of STaRS
using taxi data from NYC, which contains information
about over 360 million trips taken by the NYC’s 13,000
taxis in 2011 and 2012. The results demonstrate that our
approach is efficient: one simulation using over 150 million
trips can be run in under 10 minutes using a 1200-core
cluster, allowing multiple scenarios to be studied in a timely
manner. We show that the framework is effective and can
provide insights into strategies for implementing city-wide
ride-sharing solutions. We also experimentally compare our
approach against [14] and argue that their model can under-
estimate the benefits of the taxi ride sharing.

2 RIDE-SHARING SIMULATION MODEL

Given a trip request issued in real-time, our model assigns
this trip to a taxi while optimizing a pre-defined cost func-
tion under a set of constraints.

2.1 Simulation Components
The main components of our simulation model are illus-
trated in Fig. 1. We describe them in detail below.
Taxi Fleet. The taxi fleet refers to the set of taxis that are
involved in the simulation. In contrast to previous works,
where taxis are considered as homogeneous objects, to sup-
port a multi-vendor environment (e.g., yellow and green
cabs, black car services)1 and different types of vehicles,
we consider each taxi as a distinct object with its own
specifications, which include: passenger capacity, maximum
number of shared trips (often dictated by the vendors),
maximum wait time for pick-up, and extra time for drop-
off. In addition to these sharing constraints, each taxi also

1. http://www.nyc.gov/html/tlc/html/industry/current licensees.
shtml

Taxi DescriptionRide-Sharing
Constraints

C capacity of taxi expressed as the number of passengers
nshare maximum number of trips that can be shared (or -1 if this

is set based on customer preference)
tdelay or ddelay maximum time/distance the taxi is permitted to let its

customers wait for pick-up
textra or dextra maximum additional time/distance incurred by sharing a

ride

Vehicle States Description
o current occupancy, i.e., number of passengers on-board
id taxi identification number
v current speed

s0, . . . , sk list of stops the taxi has to make; s0 is the lastest stop
the taxi has made. The information stored in each stop is
specified below.

dodometer current odometer reading
ddriven distance from s0

Stop Info Description
p location of the stop sk (could be expressed as the intersec-

tion number in the road network)
o∆ the number of passengers associated with this stop, where

o∆ > 0: a pick-up
o∆ < 0: a drop-off
o∆ = 0: a waypoint (e.g., to look for riders)

TABLE 1
Taxi specifications: ride-sharing variables and vehicle state information

associated to each taxi and stop event.

Passenger DescriptionRide-Sharing
Constraints

op number of passengers
tpick time requested for pick-up
ppick pick-up location
pdrop drop-off location
nshare maximum number of trips to be shared
tdelay maximum time the customer group is willing to wait for

pick-up
textra maximum time the customer group is willing to tolerate in

addition to the actual trip time

TABLE 2
Customer group ride-sharing parameters.

maintains information about its current speed, occupancy,
and the list of stops it has to make to serve its scheduled
riders. The list of variables associated with a taxi is given in
Table 1.

A taxi in our model is a dynamic object and is always on
the move. Even without any passenger on-board, the taxi
still has a destination where it drives to, for example, to
look for new passengers. To capture this, we allow each taxi
to define favorite locations at certain times of the day that it
would drive to when it is not occupied.
Passengers. We assume that passengers ride in groups of
size greater than or equal to one. Each group is associated
with a drop-off location and a set of ride-sharing constraints
(e.g., how many other groups they are willing to share a
ride with and how much additional time/distance they can
tolerate). We assume this information is available when a
customer initiates a taxi request, either by calling a control
center, using a mobile app, or communicating this directly
to a driver in case of street hailing. Table 2 lists the variables
associated to passengers in our model.
Scheduler. For each pick-up request, the scheduler finds the
most appropriate taxi based on pre-defined metrics. To do
so, the scheduler must know all taxi locations along with
their current states at all times (see Table 1). We describe the
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Input Description
Parameters
m number of taxis
C default taxi capacity. Optionally, the capacity for each

taxi may be customized by providing an additional
array {c0, c1, ..., cm−1}.

nshare maximum number of trips to be shared by default. This
number initially populates both of the nshare values of
each taxi and passenger ride-sharing constraints (see
Table 1, 2), unless specified otherwise. The motivation
for having this parameter defined globally was to allow
agencies/taxi vendors to define their fleet policy in
addition to what described by the drivers and riders.

tdelay(ddelay),
textra(dextra)

maximum wait and additional time(or distance) each
customer could spend by default. Similar to nshare ,
the motivation for having these parameters defined
globally is to provide users flexibility to customize the
simulations.

f(r, c) cost (metric) function that given a taxi c and a pick-up
request r, returns the cost of accommodating r with
c. By default, this function evaluates the additional
distance that c must drive to accommodate r.

TABLE 3
Input parameters for simulation.

details of the scheduling algorithm in Section 3.
Trip Data. The proposed simulation framework is data-
driven. It leverages historical trip data to study the tradeoffs
of different ride-sharing strategies. We assume the availabil-
ity of trip data which include: taxi ID, pick-up and drop-off
time, latitude and longitude for both pick-up and drop-off,
travel distance, and number of passengers. We model trips
and taxis as separate objects, and track the state of each taxi
during the simulation. This is equivalent to assuming that
the data set is a sample of trips from an unknown distri-
bution and ignoring that each trip was originally associated
with a particular taxi.
Road Network. The underlying road network of a city is
represented as a directed graph G(V,E). All taxis travel
along this road network. Each directed edge e ∈ E repre-
sents a road segment, and each node v ∈ V represents the
intersection of two or more roads. When a road allows traffic
flow in both directions, there are two directed edges for that
road. Given a segment ei, ti is the distance (or time) a vehicle
must travel from one intersection point to another along ei.
Note that traffic conditions can be easily incorporated in
the model by introducing weights on edges of the graph
as explained in Section 3. We assume that the origin and
destination of a trip correspond to nodes in this graph. If
the trip begins or ends in the middle of a road segment, we
approximate the location to the nearest intersection node.

2.2 Data-Driven Simulation
The simulation engine aims to derive the best ride-sharing
scenario based on a set of input parameters (shown in
Table 3) in a data-driven fashion, where pick-up requests
are derived from historical data. It operates in an event-
driven manner and updates its state when a pick-up request
is issued. When a customer group requests a taxi, the
scheduler receives the information and requests all taxis to
report their status (i.e., position and sharing status). The
scheduler then computes the additional cost for each taxi
to accommodate this trip based on the cost function f ,
and selects the taxi with the minimal cost that satisfies all
ride-sharing constraints. If no appropriate taxi is found, the

request is denied. As we discuss in Section 3, the simulation
engine allows different scheduling strategies.

Since taxi ride-sharing typically occurs in real-time, our
approach needs to support online simulations, that is, simu-
lations where trip requests are issued dynamically. Thus, the
scheduler must evaluate the current conditions and respond
to the customer immediately. If the request is accepted,
the current state need to be updated as well. The need
for high throughput and immediate responses separates us
from previous work. For instance, [14] assumes that all the
trips are known in advance which can substantially reduce
computational requirements but does not lead to a realistic
ride-sharing solution.

3 SIMULATION ALGORITHM

In the taxi ride-sharing problem, the goal is to minimize
the total cost or maximize the total utility of sharing while
meeting a set of constraints. Examples of costs include travel
distance, CO2 emissions, gasoline consumption, time-to-
pick-up, idle time, or weighted combinations of these cost
functions. We use the following formulation to design our
optimization algorithm. Let f(ri, cj) be the additional cost
(e.g., distance, CO2 emissions) a cab cj incurs to share its
current trips with a new trip ri. Let n be the number of trips
and m be the number of taxis. The minimum total travel
cost T (i) for the first i trips is:

T (i) =

{
T (i− 1) + min1≤j≤m{f(ri, cj)}
T (i− 1), if there is no available cab.

We can use a similar formulation to maximize the utility
(e.g., revenue). Hence, to describe our algorithm, we use the
additional travel distance for a cab cj to accommodate a trip
ri as cost function f(ri, cj) and try to minimize the total
travel distance T (n).

The algorithm considers all trips in chronological order.
It attempts to mimic real-time dispatching by minimizing
T (n) in an online fashion. For each trip ri, the state of a
cab cj is updated based on the time elapsed since the last
trip ri−1 and the computed additional distance f(ri, cj).
Trip ri is assigned to the cab with the minimum additional
distance, and the total cost T (i−1) is updated. Note that this
is not a globally optimal solution: we do not consider all the
possible combinations of trips to be shared. However, this
matches a more realistic scenario in which we are not able
to foresee the future trips or make changes to the past trips.

3.1 Preprocessing Phase

Before running the simulation, trips are sorted in chrono-
logical order (by pick-up time). We use a graph represen-
tation of the road network obtained from the Open Street
Map data [17], which contains the longitude and latitude
of each intersection as well as the distances between any
two adjacent intersections. We apply Dijkstra’s algorithm
to compute shortest paths and distances between any two
given intersections. In this step, we also make sure that
the shortest paths are indexed in a cache-coherent layout
to facilitate our in-simulation queries (see Section 3.4). The
running time of the preprocessing phase is O(k3+n log n),
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Algorithm 1 Taxi ride-sharing simulation
1: Inputs: R = {r1, r2, . . .}: a set of trips
2: Parameters: m: number of cabs, C: capacities of cabs, nshare , ddelay , dextra ,
f(r, c)

3: R← Sort(R)
4: {c1, c2, . . . , cm} ← InitializeCabs(m,C)
5: for i = 1 to |R| do
6: ElapsedTime← PickUpTime(ri)− PickUpTime(ri−1)
7: f∗ ←∞
8: for j = 1 to m do
9: UpdateState(cj)

10: fij ← f(ri, cj)
11: if f∗ > fij then
12: f∗ ← fij
13: c∗ ← cj
14: end if
15: end for
16: Assign(ri, c

∗)
17: T (i)← T (i− 1) + f∗

18: end for

Algorithm 2 Cost Function f(r, c)
1: Inputs: r: trip, c: cab
2: Parameters: nshare , ddelay , dextra

3: S ← list of stops of c including its current location {s0, s1, . . . , sk}
4: Ddrop ← ShortestPathDistance(sk, r.pdrop) . sk : the last stop in S
5: idxpick, D

∗ ← FindPickUpOrder(r, c, S,Ddrop)
6: if idxpick ≤ k then
7: Dpick ← D∗ −Ddrop

8: idxdrop , D
∗ ← FindDropOffOrder(r, c, S, idxpick , D

∗,Dpick )
9: end if

10: return D∗

11: Output: D∗: an additional distance for cab c to accommodate trip r

where k is the number of intersections and n is the number
of trips.

Note that traffic conditions can be easily integrated in
the simulation. One can replace the shortest path matrix
with multiple matrices, one for each hour of the day. In
each of these matrices, the distance between any two in-
tersections is adjusted according to the traffic conditions.
For instance, this can be achieved by scaling the weights of
the edges in the road network by the ratio of the average
speed on that edge at a given time and a base speed (for
instance, speed limit). More generally, we can define traffic
conditions as a weight matrix that changes over time, such
that its entrywise product with the pre-defined shortest path
matrix could be used in place of the latter to reflect traffic
conditions into the calculation.

Finally, observe that by separating the notion of a cab
from a trip, we gain extra flexibility that is not present
in [14]. For example, we are able to study the relationship
between the number of cabs and shareability. We can also
consider scenarios in which different cabs have different
capacities. Moreover, we can select the initial locations for
each individual cab.

3.2 Simulation Phase
As shown in Algorithm 1, we consider each of the n trips
in chronological order. For each pick-up request ri, we go
through all the cabs in the fleet and update their states based
on the time elapsed from the last trip’s pick-up time. For
each cab cj , we also compute additional cost f(ri, cj) and
assign ri to the cab with the lowest additional cost.

To update the state of a cab (i.e., location, occupancy and
stops that it is visiting to pick up and drop off passengers),
we need its speed, which is defined to be the speed of the
trip whose pick-up or drop-off takes place next. This can

Algorithm 3 FindPickUpOrder
1: Inputs: r: trip, c: cab, S = {s0, s1, . . . , sk}: list of stops of c including its

current location, Ddrop : the shortest distance between sk and pdrop

2: Fields: c.C: capacity of c, r.op: number of passengers of r
3: Parameters: nshare , ddelay , dextra

4: idx ← max{i|NumOfShares(si) + 1 > nshare∨
5: Occupancy(si) + r.op > c.C}
6: D∗ ←∞
7: idxpick ← k + 1
8: prev ← sidx
9: for j = idx+ 1 to k do

10: D1 ← ShortestPathDistance(prev , ppick )
11: D2 ← ShortestPathDistance(ppick , sj)
12: D3 ← ShortestPathDistance(prev, sj)
13: if constraints given by ddelay and dextra are satisfied
14: for r and trips containing s ∈ S then
15: D ← D1 +D2 −D3 + Ddrop

16: if D < D∗ then
17: D∗ ← D
18: idxpick ← j
19: end if
20: else if constraint given by ddelay is NOT satisfied for r then
21: break
22: end if
23: prev ← sj
24: end for
25: return idxpick , D

∗

be estimated using the trip duration (drop-off time − pick-
up time) and distance. Once we have an estimation of the
speed, the traveled distance and position of each cab can be
interpolated from the time spent since the beginning of the
trip. At the same time, we also update the cab occupancy
and planned stops if there was any scheduled drop off or
pick up along its traveled itinerary.

A straightforward way to compute the additional cost
f(ri, cj) is to explicitly find an optimal route for cj that
includes the pick-up and drop-off locations of ri and to
compare its cost with the cost of the current route for cj .
However, computing the optimal path is known as the
Sequential Ordering Problem (SOP) which is a version of
the Traveling Salesman Problem and is NP-hard [18]. Thus,
to make the computation tractable, we use a heuristic to
find a best route for cj to accommodate ri. We first find a
position to insert the pick-up location ppick of ri into the list
of stops S assuming that the order to visit those stops stays
the same, and the drop-off location pdrop of ri is added to
the end of the route. After that, we adjust the order of pdrop
so that we can find a route with the lower additional cost.
Along with computing f(ri, cj), we check if cj has enough
capacity for all the passengers of ri and if the constraints
given by nshare , ddelay and dextra are satisfied. Otherwise,
we set f(ri, cj)=∞. After we assign ri to the cab with the
minimal additional cost, we update the stops S to reflect
this assignment. The computation of f(ri, cj) is described
in Algorithms 2, 3 and 4; we discuss it in detail below.

Let S={s0, s1, . . . sk} be a list of scheduled stops for
cab cj , and let ppick and pdrop be the pick-up and drop-off
locations of ri, respectively. If cj is vacant, the additional
cost f(ri, cj) is simply the sum of shortest path distances
between its current location s0 and ppick , and ppick and
pdrop .

If cj has passengers, we need to find the best positions
to insert stops ppick and pdrop into S. The challenge is to
find the order for those with the smallest additional distance
and at the same time satisfy all the constraints, in particular,
making sure that each trip is shared with at most nshare
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Algorithm 4 FindDropOffOrder
1: Inputs: r: trip, c: cab, S = {s0, s1, . . . , sk}: list of stops of c,

idxpick : index of S where to insert ppick , D∗: additional distance obtained
from FindPickUpOrder, Dpick : additional distance to insert ppick at idxpick

2: Parameters: ddelay , dextra

3: prev ← ppick

4: for j = idxpick + 1 to k do
5: D4 ← ShortestPathDistance(prev , pdrop)
6: D5 ← ShortestPathDistance(pdrop , sj)
7: D6 ← ShortestPathDistance(prev , sj)
8: if constraints given by ddelay and dextra are satisfied
9: for trips containing s ∈ S then

10: D ← Dpick +D4 +D5 −D6

11: if D < D∗ then
12: D∗ ← D
13: idxdrop ← j
14: end if
15: end if
16: prev ← sj
17: end for
18: return idxdrop , D

∗

other trips and the number of passengers in a cab does not
exceed the capacity C at all stops. In addition, for each trip,
we ensure that the delay distance (the distance from the
location where this trip was assigned to its pick-up location)
and extra distance (the length of the route from ppick to
pdrop including other stops minus the shortest path distance
between ppick and pdrop) does not exceed ddelay and dextra
respectively. To do so, we aggregate information about the
maximum number of shared trips, maximum occupancy, the
delay and distance among the stops and each stop maintains
such information. We use this information to check if all the
constraints would be satisfied for a trip request and the trips
that are already being served.

To compute the additional distance to accommodate ri,
we assume temporarily that the drop-off will happen after
the last stop sk. Let Ddrop be the length of a shortest path
between sk and pdrop . As mentioned above, we first find a
position for ppick (Algorithm 3). Suppose l′ ∈ {0, . . . , k} is
such that each trip containing one of stops sl′ , . . . , sk can
be shared with at least one more trip and the occupancy o
of cj does not exceed the capacity C of cj at any stop of
sl′ , . . . , sk. For each l ∈ {l′, . . . , k−1}, we try to insert ppick
between sl−1 and sl. If the lengths of shortest paths between
sl−1 and ppick , ppick and sl, and sl−1 and sl are D1, D2 and
D3 respectively, then an additional distance is defined to be
D=D1+D2−D3+Ddrop . Then, we determine the position of
ppick that minimizes this additional distance D and at the
same time satisfies the delay and extra distance constraints
given by ddelay and dextra respectively, for both ri and all
the trips in service. Let f ′(ri, cj) be the minimum of D over
l and sp ∈ S be the first stop after ppick .

Note that the algorithm performs pruning. It stops con-
sidering a cab once the delay constraint given by ddelay is
no longer satisfied (Algorithm 3, lines 20, 21). It also prunes
stops (the underlying search space of the approach) – it only
considers stops that satisfy capacity and sharing constraints
(Algorithm 3, line 4, 5).

Next, we search for a best position for pdrop
(Algorithm 2, line 8). As shown in Algorithm 4,
similar to the previous process, for each sl ∈
{sp−1=ppick , sp, sp+1, . . . , sk−1}, we query for the shortest
path distances between sl and pdrop , pdrop and sl+1, and sl
and sl+1. LetD4, D5, D6 denote these distances respectively.

Then, an additional cost for each new route is defined as
D′=f ′(ri, cj)−Ddrop+D4+D5−D6. We select the route that
minimizes the additional cost, i.e., min{D′, f ′(ri, cj)}, and
set f(ri, cj) to be this quantity. If a route is such that the
extra distance or delay for ri and trips in service exceed
dextra or ddelay , then the route is discarded.
Time complexity. The complexity of the simulation phase of
our algorithm is O(nm), which is linear in the number of
trips. This allows us to scale dynamic pick-up and delivery
tasks to large data sets. However, a large number of shortest-
path queries is needed for each trip and cab (Algorithm 2,
lines 4, 5 and 8; Algorithm 3, lines 10-12; Algorithm 4, lines
5-7). Even though the algorithm is efficient, these queries
become a bottleneck. Below, we propose two strategies that
exploit parallelism and an efficient shortest-path indexing
scheme to support large-scale simulations.
Discussion. Approximation algorithms for SOP have been
studied extensively [18], [19]. While our heuristic may ap-
pear to have a performance that is suboptimal compared
to these algorithms when a trajectory for a particular cab
is considered, the tradeoff of using a heuristic approach is
substantially reduced in our study due to the large number
of cabs involved. More precisely, suppose T is a set of all
possible trajectories. If we assume that the set of optimal tra-
jectories T ∗ ⊆ T associated with each cab is an i.i.d sample
of size l, and X1, X2, . . . , Xl are costs of these trajectories,
then the probability that the minimum cost found by our
heuristic is more than ε away from the optimal cost Θ is:

P (min(Xi)−Θ > ε) =
[
P (Xi −Θ > ε)

]l
=
[
M−ε
M

]l
(1)

where M is the maximum possible cost and the second
equality follows from the definition of uniform distribu-
tion. Note that Equation 1 assumes that Xi is uniformly
distributed. However, a similar result can be proved for a
more general class of continuous distributions with density
bounded away from zero at Θ, at the cost of a more involved
analysis and slightly worse constant. For instance, suppose
l=5000, M=30 miles and ε=0.2 mile, the probability that
the minimum cost derived by the heuristic would be more
than 0.2 mile away from the optimal cost is 2.9857e−15.

3.3 Exploring Parallelism
Although our simulation algorithm achieves linear scaling
with the number of trips, running a simulation at a large
scale, e.g., with one year of data, can be prohibitively
expensive. Using one CPU core, our algorithm takes almost
15 minutes to complete a simulation with 11,500 taxis for a
single day. To address this problem, we leverage two forms
of parallelism.
Intra-Request Parallelism. Since each simulation step de-
pends on the results of the previous step, it is not possible
to achieve parallelism at this level, i.e., having each thread
execute one step. However, computing the sharing cost of
each taxi with respect to a pick-up request can be done in
parallel since this evaluation for each taxi is independent
from each other (Algorithm 1, lines 9-14). In our implemen-
tation, we use a thread pool model to distribute work, i.e.,
a set of taxis across multiple machine cores. To minimize
inter-thread communication, each worker thread processes
multiple taxis at time.
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Workers still need to synchronize with each other at
the end of each pick-up request (Algorithm 1, line 16-17)
to assign the best solution for the trip request. Generally,
a lock has to be used to avoid race conditions. However,
using locks on hundreds of millions of iterations would
be a bottleneck itself. Thus, to work around this issue, we
make use of atomic operations that are available on modern
x86 architectures to construct our work queue in a lock-free
manner [20]. Using 8 threads, our simulator was able to
finish a one-day run in just under four minutes, with the
lock-free queue giving us a 20% boost in performance.
Inter-Partition Parallelism. The intra-request strategy par-
allelizes tasks based on the number of taxis, which is rela-
tively small. Thus, it is not able to leverage larger systems
with thousands of cores. In order to utilize larger resources,
we need to parallelize tasks based on the number of pick-up
requests. As stated above, running simulations in parallel
on separate pick-up requests is not possible due to the
dependency of steps. However, we can take advantage of
an inherent characteristic of the taxi data: virtually no trips
are shared during the early morning hours – 4AM, which co-
incides with the AM shift change of NYC taxis [3]. Thus, we
can safely divide our data into independent simulations of
one-day in size without sacrificing correctness. This means
that a simulation using one year of data can be divided into
365 sub-tasks, each of which can be run in parallel. A final
reduction step is needed for reporting the result of the entire
simulation. We note that this phenomenon is not specific
to NYC: periods of low taxi activity that occur naturally
due to human diurnal cycle can be used to parallelize the
simulation.

While traditional frameworks such as MPI can be used
to spawn the processes for the above sub-tasks, they offer
little aid in performing analysis of the results (such as
generating plots of shared trips). We have extended our
system to support the MapReduce framework and allowing
the integration of analysis tasks using MapReduce jobs.
In our setup, each mapper is a simulator program that
can process a set of pick-up requests independently. Data
filtering may be applied at this stage to limit data requests
based on constraints, e.g., a spatio-temporal condition. Most
analysis tasks happen in the reduce phase of our framework.
Depending on the analysis, users can specify an appropriate
output for the map phase. The results reported in Section 4
were obtained using the MapReduce implementation. The
pseudocode for one simulation experiment is given in Algo-
rithm 5.

3.4 Cache-Coherent Shortest Path Index
Our simulation algorithm uses shortest path queries exten-
sively (Algorithm 2, 3, 4). This is where our computation
spends the most time. In particular, each computation of
f(ri, cj) makes a series of shortest path queries to all stops
of cj to exhaustively find the minimal solution. Since the
complexity of our algorithm is O(nm), this could result in
a very large number of queries. For example, performing
a simulation of 11500 taxis with nshare=4 on one day
worth of taxi trip records (∼300k requests) would require
over 3 billion shortest path queries. Thus, it is of utmost
importance that we build an efficient shortest path indexing
scheme to support such queries.

ith$row$

jth$column$
D(i,j)$

shortest$path$$
from$i$to$j$

(a)

D(src,*))

D(dst,*))

D(*,src)) D(*,dst))

(b)

D(src,*))

D(dst,*))

D(*,src)) D(*,dst))

DT(src,*))

DT(dst,*))

=)D(*,src))

=)D(*,dst))

(c)

Fig. 2. Cache layout for precomputed shortest paths: (a) a distance
matrix as a result of running Dijkstra’s algorithm on all intersection pairs;
(b) memory access patterns from computing f(r, c) for a pick-up request
going from src to dst – red indicates a high chance of cache misses; (c)
storing the transpose of the distance matrix to avoid cache misses in
backward lookups.

Our initial approach was to precompute and cache the
shortest distances (and their predicates) for all possible
intersection pairs in NYC. The storage size of this matrix is
fairly small (about 500MB for roughly 10,000 intersections),
and would fit completely on commodity PCs. Therefore,
our shortest path queries are now reduced to just memory
accesses. The data structure for this caching scheme is
depicted in Fig. 2a.

Nevertheless, our experiments still show under utiliza-
tion of CPUs when running large experiments. Inspecting
further, we noticed that there was a large number of L2/L3
cache misses for these queries. In fact, over 50% of the mem-
ory accesses resulted in a cache miss (more than 1.5 billion
misses out of 3 billion accesses). This can be explained by
the memory access pattern which is described in Fig. 2b.
Each time we compute the cost to accommodate a request,
we have to issue shortest path queries originating from as
well as going to its pick-up location src and drop-off location
dst. In fact, over 95% of the queries involve src and dst.
Among these queries, forward lookups, i.e., finding shortest
paths originating “from” an intersection, would present a
cache-coherent memory access patterns (depicted in green).
Ideally, each CPU would only need to cache 2 rows of data
in order to have all queries resided in cache. However,
backward lookups, i.e., finding shortest paths going “to” an
intersection, is likely to incur cache misses most (if not all)
of the time. This is because elements inside a column could
be tens or hundreds of megabytes apart from each other. In
this case, the entire shortest path computation would need
be in cache to have all requests served without any penalty.

We propose a simple, yet efficient, layout to increase the
cache coherence of shortest path lookups. By transposing
the shortest path matrix, backward lookups become forward
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Fig. 3. Shortest path query performance with (green) and without (red)
cache-coherent layout. The cache-coherent layout reduced the number
of cache misses substantially (3x-6x less); thus, improve the overall sim-
ulation performance. The experiments were run on an entire day worth
of taxi trip records (∼300k requests), using nshare=4. The speedup of
using multiple cores was not demonstrated after 4 cores, especially at
16 cores, due to the saturation of memory bandwidth that overshadowed
the computation cost.

lookups and vice versa. Therefore, we elected to store an
additional transposed matrix in our shortest path cache
to convert all backward lookups to forward lookups. As
illustrated in Fig. 2c, each CPU only needs to keep 4 rows
of data in its L2/L3 cache to serve all shortest path queries
related to a trip request. This comes at a cost of doubling
the shortest path data structure; however, it significantly
improves the simulation performance. Fig. 3 shows the
shortest path query performance with (green) and without
(red) cache-coherent layout. The cache-coherent layout was
able to reduce the number of cache misses up to 6 times on
a single core, thus, resulting in a 2x speedup of the overall
performance. The experiments were run on an entire day
worth of taxi trip records (∼300k requests), using nshare=4.
Increasing the number of cores above 4 brings no added
benefit. The speed-up from using multiple cores was not
observed for more than 4 cores. Using 16 cores, the memory
bandwidth is saturated, overshadowing the computation
cost. Since using 4 cores yields the best performance ratio,
we used this setup for our experiments.

3.5 Complexity Analysis

The serial complexity of our simulation is O(nm), asymptoti-
cally. A tighter bound is:

O(n · (mCf + Ca)) (2)

where Cf and Ca are the complexity of our cost function
(Algorithm 2) and taxi assignment (Algorithm 1, line 16),
respectively. From Algorithm 3 and 4, both Cf and Ca are
O(|S|), where |S| is the maximum number of stops each
taxi maintains. Since each trip cannot result in more than
two stops, O(|S|) is equivalent to O(2 · nshare), or simply
O(nshare). This means that the complexity of our algorithm
is indeed O(nsharemn). However, given that nshare is usu-
ally much smaller than m and n (e.g., 4 or 5 vs. roughly
∼10k and ∼500k, respectively), we can consider nshare as
just a constant.

For the parallel complexity analysis, we show that our im-
plementation is cost optimal, i.e., its asymptotic running time
multiplied by the number of parallel processors involved
in the computation is comparable to the running time of
the best serial implementation [21]. Since the inter-partition
parallelism is a direct share-nothing computation and is
expected to achieve cost optimality through the map phase
of MapReduce, our focus is on the intra-request parallelism.
For a thread pool of size p, the sharing cost computation of
m taxis is evenly distributed to p threads, resulting in the
time complexity:

O(n · (mp Cf + Cs + Ca)) (3)

where Cs is the synchronization time of all threads at
the end of each request. In our case, Cs=O(p) since we
only need to compare solutions of p threads to select the
optimal one. By definition, our framework can achieve cost
optimality iff:

p · (n · (mp Cf + Cs + Ca)) = O(nm)

p · (n · (m
p
Cf + p+ Ca)) = O(nm)

n · (mCf + p2 + p · Ca) = O(nm) (4)

In order to satisfy Equation 4, the following must be true:
Cf=O(1), p2=O(m) (or p ≤

√
m), and Ca ≤ m

p . In our case,
where p is always set to at most 8 (based on our experiment
on shortest path query performance in Section 3.4) and
nshare is a constant, all of the above conditions are always
true. Thus, the parallelism in our framework is cost optimal.

The above constraints also define the class of algorithms
that can be plugged into our framework without loss of scal-
ability. In particular, the algorithm that finds a route for each
cab (Cf ) should have a time complexity that is independent
of m and n while selecting which cab to service a given
trip (Ca) must be done in linear time. These guarantee the
asymptotic complexity of the system to beO(nm). However,
if a more complex algorithm is desired, it can still be
integrated into our framework, possibly with an additional
cost. For example, employing a trip selection algorithm that
runs in O(m) time or a taxi selection algorithm that runs
in O(m2) time would result in an overall complexity of
O(nm2). Nevertheless, the inter-partition parallelism would
always be in place regardless of the scheduling algorithms
chosen.

4 EXPERIMENTAL EVALUATION

In this section, we demonstrate the scalability of our ap-
proach using the NYC taxi trip data set described below.
To run our experiments, we used the open source Apache
Hadoop software library on a 1200-core cluster. An exam-
ple MapReduce implementation of a simulation is given
in Algorithm 5. We also describe findings of our study
which indicate that our approach is effective and derives
information that may be useful to policy makers, the taxi
industry and riders.

4.1 Data
For our study, we used the NYC taxi trip data set of 2011
and 2012 which was provided to us by Taxi & Limousine
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Algorithm 5 Large-scale simulation using MapReduce
(Varying the degree of sharing)

1: Parameters P: m: number of cabs, C: capacities of cabs, nshare , ddelay , dextra

2: Input: L: list of filenames each of which contains one day worth of trip data
3: procedure MAP(TripDataFile)
4: for nshare = 0 to 4 do
5: Result← Algorithm 1(TripDataFile,P)
6: Emit(nshare , (DateOfTrip,Result))
7: end for
8: end procedure
9:

10: procedure REDUCE(Key,Values)
11: Initialize Output
12: Sort(Values) . Sort by DateOfTrip
13: for (DateOfTrip,Result) in Values do
14: for i = 0 to Length(Result) do
15: Output[i].Append(Result[i])
16: end for
17: end for
18: Emit(Key,Output)
19: end procedure

Commission (TLC) through a FOIL request.2 This represents
a superset of the data set used in [14], where only 2011 trips
were considered. The data contains information about 360
million trips taken by the 13,237 taxis in NYC. Each trip
is represented by a vector with the following fields: taxi
ID (medallion ID), pick-up and drop-off times, latitude and
longitude for both pick-up and drop-off, travel distance in
miles, and number of passengers. All IDs are anonymized.
We considered all trips that occurred within Manhattan,
and between Manhattan and the two international airports:
John F. Kennedy and LaGuardia. These trips constitute the
majority of all taxi trips in NYC [22]. We also eliminated
data that appeared to be erroneous, including trips without
passengers, with the average speed less than 3 mph, and
that start or end at invalid locations. The 260 million trips
that remained after selection and cleaning were used in our
experiments.

4.2 Taxi Ride Sharing in NYC: A Case Study

Recall that taxi ride sharing involves three major entities:
the city, taxi companies (drivers) and passengers. Each of
them aims to minimize different costs: the city is interested
in reducing pollution and traffic, the taxi companies want
minimize the operating costs while maximizing revenues,
and passengers want to get their destinations as fast and
cheaply as possible. Thus, a solution to the taxi ride-sharing
problem has to take into account tradeoffs between these
competing objectives.

A natural metric that can be used to analyze the effects
of ride sharing is the total distance traveled by all the cabs,
which correlates with both the traffic volume and emissions.
A decrease in the total traveled distance can also serve as an
incentive for the taxi industry to engage in ride sharing,
since such a decrease is likely to lead to a proportional
decrease in the cost of running the business. However, ride
sharing also imposes additional costs to the passengers in
the form of extra travel distance and additional stops along
the way. Therefore, for taxi ride sharing to be a practical
solution for reducing emissions and traffic, one also needs to
control the burden placed on customers. To account for this,

2. Taxi trip data is now open and can be downloaded from TLC at:
http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.

(a) (b)

Fig. 4. (a) The percentage of saved total travel distance through
ride sharing for nshare=1, 2, 3, 4 (b) The average travel distance for
nshare=0, 1, 2, 3, 4.

we introduced two parameters in our simulation model:
dextra , the maximum extra distance for each trip, and nshare ,
the maximum number of trips that each trip can be shared
with. In addition, we use another parameter, ddelay , which is
a bound on the maximum distance a taxi is allowed to travel
to pick up a customer. Note that a constraint on ddelay is
naturally present in the scenario where no sharing occurs as
well. Any constraints on dextra and ddelay are equivalent to
constraints on textra and tdelay which are expressed in terms
of time. For our simulations, we express the constraints in
terms of distance. We omit traffic conditions in the exper-
iments because we did not have access to the appropriate
traffic data.

The parameters supported by STaRS are described in
Table 3. By definition, each trip can be shared with at most
nshare other trips. Note that the bound on nshare controls the
maximum number of extra stops, which is at most 2nshare .
This parameter is also used in [14], where k=nshare+1 is
used. However, the optimization proposed in [14] is NP-
hard for k>2; thus, k=2 was chosen for the solution to be
computationally feasible. Our approach scales for larger
values of nshare as well, which allows us to study the effects
of this parameter on the total savings and costs of the
proposed ride-sharing solution.

To keep the waiting and service times within a reason-
able interval, we set ddelay=1 mile and dextra=2 miles (at
most 5 minutes of waiting time and 10 minutes of extra ser-
vice time if the average taxi speed is 12 mph). Note that our
approach scales to include both of these parameters in the
study. Finally, for simplicity, we set each taxi’s capacityC=4.
Our simulation model can handle individual constraints by
letting each customer set their own nshare , ddelay , and dextra .
This makes it possible to support more complex scenarios
where riders have different ride-sharing preferences.
Varying the Degree of Sharing. We studied the effects of pa-
rameter nshare . The pseudocode for this experiment is given
in Algorithm 5. The simulations assumed 9,500 cabs were
active on Sundays and 11,500 cabs were active on the other
days of the week. The simulation results for nshare=1, 2, 3, 4
are presented in Fig. 4 for each day between Jan 1st, 2011
and Dec 31st, 2012. Fig. 4a shows the ratio of the total travel
distance saved by ride sharing to the total travel distance of
original trips (i.e., the sum of the shortest distances between
pick-up and drop-off locations of the serviced trips). Fig. 4b
shows the average travel distance for each nshare=1, 2, 3, 4
as well as nshare=0 (no ride sharing). Fig. 5a shows the
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(a) (b) (c)

Fig. 5. (a) The distribution of number of extra stops for nshare=1, 2, 3, 4. Note that the number of additional stops for a trip is bounded by 2nshare .
(b) The distribution of extra distances for nshare=1, 2, 3, 4. Note that 0 mile extra distance for a trip means that between the pick-up and drop-off
locations of this trip a cab traveled without picking up or dropping off other trips. (c) The distribution of number of shared trips for nshare=1, 2, 3, 4

Fig. 6. The average saving by hour for nshare = 1, 2, 3, 4 and the total
number of trips.

distribution of the number of additional stops for different
values of nshare (1 to 4). For example, for nshare=1, 120×106

trips have no additional stops, and the maximum number of
additional stops is 2. But when nshare increases to 2, fewer
than 80 × 106 trips have 0 additional stops, and now, there
are trips with up to 4 additional stops. Note that without
ride sharing, the number of extra stops for each trip is 0.
Fig. 5b is similar to Fig. 5a, but shows the distribution of the
extra travel distance for different sharing levels. We have
also analyzed the distribution of the number of trips each
particular trip was shared with. Fig. 5c suggests that as we
increase nshare shareability increases.

In addition to the simulations by day (4am to 4am on the
next day), we also conducted simulations by hour on the
same data set and results are summarized in Fig. 6. Further
variations between weekend and weekday, as well as, other
temporal features, can be captured in our simulation by
replacing a single shortest path matrix with a different one
for each hour of the day. A similar approach can also be
used to capture traffic conditions when data is available.

Naturally, our results quantify a tradeoff between the
savings in the total distance through ride sharing and

Saved Distance (%)
nshare 1 2 3 4

Airport Trips C = 4 33 42 44 44
Airport Trips C = 8 35 46 50 54

Trips within Manhattan 17 27 33 36
All Trips 18 29 34 37

Avg Extra Distance (mi.)
Airport Trips C = 4 0.21 0.35 0.42 0.44
Airport Trips C = 8 0.22 0.38 0.48 0.54

Trips within Manhattan 0.35 0.57 0.68 0.72
All Trips 0.35 0.57 0.68 0.72

TABLE 4
Comparison of city-wide ride sharing with city-airport ride sharing.
Recall that C is the capacity of each cab. See Section 2 for details.

burden incurred by customers. As we increase nshare , the
savings in the total distance increase. On the other hand, this
also leads to an increase in the travel distance and number of
extra stops for each trip. However, our results also suggest
that contrary to the findings in [14], nshare=2 or even 3 may
be an optimal bound on the maximum number of trips to be
shared, offering a better tradeoff between the savings and
costs. In particular, for nshare=2 the total saving is 28.6%
on average with the average extra distance of 0.57 miles,
while for nshare=1 the saving is 18.2% with the average
extra distance of 0.35 miles.
Airport vs. City Trips. Trips between Manhattan and the
airports are easier to share due to the fact that their origins
or destinations are often co-located, so these trips can pro-
vide a benchmark for our ride-sharing solution. We have
conducted a separate simulation that included only trips
between Manhattan and John F. Kennedy International Air-
port and trips between Manhattan and LaGuardia Airport.
The results, summarized in Table 4, suggest that airport
ride sharing is very effective and can serve as the first step
for a city-wide implementation. Furthermore, sharing trips
within Manhattan leads to savings that, albeit lower (see
Figure 4b), are comparable to the airport results, and thus
in-city sharing should also be considered.
Varying the Number of Cabs. To further demonstrate the
flexibility of our framework and scalability of our algo-
rithm, we have studied the effects of another parameter,
the number of cabs, on the ride-sharing simulation. Our
results show that the savings, average extra distance, av-
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Fig. 7. The average of the minimum numbers of cabs required to achieve
95% of service rate for nshare = 0, 1, 2, 3, 4.

erage number of extra stops, and the distribution of the
number of shared trips are not affected by the number of
cabs used in simulation. However, as the number of taxis
increases, the number of accommodated trips increases as
well. We have also observed that without ride sharing, we
can serve at most 95% of the trips in the data set due to
the nature of our simulation. This motivated us to study the
following question: what is the minimum number of taxis
that is required to achieve a good service rate with taxi ride
sharing?

To answer this question, we used binary search to find
the minimum number of cabs that can achieve 95% service
rate for nshare = 0, 1, 2, 3, 4 for every hour on each day in
2011 and 2012. We would like to emphasize that in general
this binary search procedure is computationally intensive
since it requires that an individual simulation be run for
each parameter setting on each iteration. However, due to
scalability properties of our framework, we can efficiently
handle such parameter sweeps. The running time of this
binary search on 2 years of data was roughly 1 hour 10
minutes.

Fig. 7 shows the average of the minimum number of
taxis by hour for each day of the week. The weekly pattern
shown in Fig. 7 for nshare = 0 (no sharing) matches the
statistics presented in [3], which provides evidence for the
validity of our simulation approach.3 For nshare > 0, we
see that larger values of nshare lead to a fewer number of
cabs required to achieve 95% service rate and decreasing
the number of cabs in combination with ride sharing might
be a potential solution to decrease emissions and traffic.
Different Cost Function. We also illustrate the flexibility of
our framework by optimizing a different cost function: the
total CO2 emission. Note that if taxis are all of the same
type, that is, each taxi emits the same amount of CO2,
optimizing total CO2 emission is the same as optimizing the
total distance. However, since hybrid cars were introduced,
taxi companies have replaced some of conventional gasoline

3. Note that we do not exactly match the results from [3] since we do
not explicitly include the transition between hours in our simulation.

Fig. 8. Total CO2 emissions for nshare = 0, 1, 2, 3, 4.

cars with hybrid ones to reduce emissions and lower fuel
cost. Thus, for this simulation, we assume that there are
two different types of cars, namely hybrid and conventional
gasoline cars and they emit 0.57 lb. CO2 and 0.87 lb. CO2

per mile respectively [23]. In our experiment, we simulated
ride sharing for nshare = 0, 1, 2, 3, 4 and at the same time
varied the percentage of hybrid cars in the fleet. Fig. 8
presents the simulations results. We observe that if a trip
shares a cab with at most 1, 2, 3 and 4 trips without hybrid
cars the amount of total CO2 is approximately equivalent
to having 20%, 40%, 50% and 60% of hybrid cars on the
road. In addition, the results indicate that by sharing taxis
we could still reduce gasoline emissions further once the
taxi fleet consists entirely of hybrid cars.

4.3 Comparing Different Optimization Procedures
To assess the effectiveness of our optimization procedure,
we compared it against three distinct approaches: selecting
a taxi that is the closest to the pick-up location of a trip
request; randomly selecting a taxi; and a combination of
our optimization procedure and the random approach that
samples a pre-defined number of taxis (4 in our experi-
ments) and assigns a trip to the one with the minimal ad-
ditional cost. All of these approaches must comply with the
same constraints as our optimization procedure. The results
presented in Fig. 9 show that our optimization procedure
achieves a significant lower objective value compared to
other natural baseline approaches. Furthermore, the effec-
tiveness of our optimization procedure increases compared
to other baselines as we increase nshare . Note that the worst
case computational complexity of all of these algorithms is
the same since at each iteration the status of all taxis has to
be updated.

4.4 Comparison against the Shareability Network
We compare the simulation results obtained by our ap-
proach against the results reported for the Shareability Net-
work (SN) in [14], which, to the best of our knowledge, is
the only prior work that supports large-scale ride-sharing
simulation. For direct comparison, we ran simulations with
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(a) (b)

Fig. 9. (a) The comparison of the percentage of saved total travel
distance through ride sharing for nshare=3 for different optimization
procedures: min-cost (ours), closest-taxi, random and hybrid.
(b) The comparison of the average percentage of saved total travel dis-
tance through ride sharing for nshare=1, 2, 3, 4 for different optimization
procedures.

Our Framework Shareability
Network [14]

Parameter Saved Saved Saved Saved
Settings Trips Time Trips Time

nshare=1, dextra=0.6 mi. 47% 18% 16% 8%
nshare=1, dextra=1 mi. 46% 16% 27% 13%
nshare=2, dextra=0.6 mi. 60% 31% 16% 8%
nshare=2, dextra=1 mi. 61% 29% 27% 13%

TABLE 5
Comparison of our framework and Shareability Network approach [14].

Note that nshare=1, 2 are equivalent to k=2, 3 and dextra=0.6, 1 mi.
correspond to ∆=3, 5mins in [14]. Also, for direct comparison we took
the results of [14] for δ=0 (δ: time window) since our framework is a

real-time model.

the same road network and data as in SN. The results are
presented in Table 5. In columns 2 and 4, we report the
ratio of the resulting number of trips through sharing to
the original number of trips in the data set. Columns 3
and 5 contain the ratio of the simulated travel time to the
original travel time. Observe that in our simulations, most
of the trips are shared: 47% of saved trips with nshare=1,
translating into 94% of trips being shared. On the other
hand, the percentage of shared trips using SN is much
lower; this is because with δ=0 (where δ is the time window;
see Section 5), the nodes in the SN are connected only if
the start time of the two trips is very close and it leads to
a much smaller network. This also results in significantly
smaller savings in travel time.

4.5 Performance and Scalability

We conclude this section by reporting the execution time
of ride-sharing simulation for different data sizes using a
1200-core Hadoop cluster. Table 6 summarizes the results.
We observe that the average time it takes to process one
day of data decreases as the size of data increases since we
can use the parallelism more effectively. This shows that our
framework scales to large data sets and enables us to study
taxi ride sharing by exploring many different scenarios in
timely manner.

5 RELATED WORK

Ride sharing has been framed as an instance of the “dy-
namic pickup and delivery” problem [8], [9], and it has

Data Size Execution Time Avg Execution
Time per Day

1 day 2 mins, 18 sec —
1 week 3 mins, 44 sec 32 sec

1 month 5 mins, 56 sec 12 sec
3 months 6 mins, 39 sec 4.4 sec
0.5 year 7 mins, 21 sec 2.4 sec
1 year 9 mins, 55 sec 1.6 sec
2 years 18 mins, 17 sec 1.5 sec
3 years 26 mins, 40 sec 1.5 sec

TABLE 6
Execution time of the simulation on a 1200-core Hadoop cluster.

also been addressed via linear programming [10], [11],
[12]. These optimization-based approaches are applicable to
small-scale problems, for instance, sharing within airports,
since large-scale optimization is often computationally in-
feasible. Heuristic-based solutions have been proposed for
real-time dispatching of taxis [25], [26], but they also have
limited scalability.

More recently, data-driven approaches have emerged.
The work that is most closely related to ours is the sim-
ulation model proposed by Santi et al. [14]. They used a
graph-based approach based on the notion of “shareability
network”, where nodes correspond to taxi trips, and two
nodes are connected if those trips can be shared. Their
model aims to maximize the number of shared trips or
minimize the total time taken to accommodate all the trips.
The structure of the shareability network depends crucially
on two parameters: the maximum number of shared trips k
per service and the maximum delay ∆ that a customer can
tolerate in a shared taxi service trip. These parameters con-
trol computational complexity of the problem. This solution
is tractable only for k=2: the problem becomes NP-hard for
larger values of k. Similarly, larger values of ∆ translate into
larger networks, requiring longer computation time. These
restrictions limit the scenarios that one can explore with
this approach. Moreover, their model can derive solutions
that are not feasible in real life, since it does not explicitly
take into account taxi positions and their capacity – it only
examines whether it is beneficial to share a set of trips. For
example, suppose that we decide that two particular trips t1
and t2 must be shared. Then, there must be a cab, say c, that
will serve these two trips. Suppose also that in the original
data set, c was serving trip t1 and some other trip t3 in this
order. If t1 and t2 are assigned to c, it may not be possible
for c to serve t3 any more (or the cost may be too high). It
is also unclear in this scenario what happens to the cab that
was serving t2 in the original data set.

Another limitation of this approach is that it assumes
that trips are known in advance. While this assumption
matches well car pooling scenarios where time and location
of each trip are fixed in advance, it is not suitable for
taxi ride sharing, since trip requests arrive in real time. To
address this issue, Santi et al. proposed a refinement of their
model that prunes the shareability network to allow trips
that start within a time window δ (e.g., five minutes) from
each other to be shared. However, the model is real time
only when δ=0, in which case our experiments suggest that
this model tends to underestimate the benefits of the taxi
ride sharing.

Ma et al. [15], [16] proposed a real-time dispatch system



IEEE TRANSACTIONS ON BIG DATA, VOL. XX, NO. XX, MONTH 201X 12

Our Shareability T-Share [15], [16] Approach in [24]
Framework Network [14]

Optimization Minimize total travel Maximize # of shared trips Minimize total travel Minimize total travel
distance/time or minimize total travel time distance/time distance/time

Assumptions All trips known in advance, Infinite cab capacity
and cabs’ locations and capacities

limitations are not part of the model
Model Real-time simulation Offline simulation Real-time dispatch Real-time scheduling

Parametrized 3 Limited 7 3
nshare ≥ 0 (see Table 3 k=nshare+1 ≤ 2 and max Scheduling capacity (≈ nshare ), waiting
for other parameters) additional travel time ∆ time and service constraints, and # of

servers
Scalability

as dispatch system 3 7 3 3
as study tool 3 Limited Limited Limited

TABLE 7
Comparison of data-driven approaches. Recall that nshare is the maximum number of trips shared by a trip.

for taxi ride sharing. While related, our goal is different:
we aim to support the simulation of a wide range of ride-
sharing scenarios, and designed a model that can be pa-
rameterized accordingly. Ma et al. attain fast response times
by splitting a region into grid cells such that the distance
between any two locations can be computed “heuristically”
as the distance between the cells containing them. This
allows their system to keep shortest path computations at
a minimum, but at the cost of reduced accuracy. More-
over, the results are dependent on the selected grid size.
Like Ma et al., our model demands fast response times
for queries that match trips to cabs. However, our system
always uses the “exact” shortest paths for optimizing ride-
sharing schedules. We were able to achieve this with good
performance and scalability using a cache-coherent indexing
scheme (Section 3.4). While our focus is on simulation, the
experimental results indicate that our approach is promising
for the dispatching scenario as well.

Huang et al. [24] proposed scheduling algorithms to
dynamically match trip requests to vehicles with the min-
imum cost while trip waiting and service time constraints
are satisfied. They showed that the kinetic tree algorithms
outperform commonly used approaches, such as branch-
and-bound and mixed-integer programming. As discussed
in Section 3, such algorithms can be integrated into our
framework.

6 CONCLUSION

In this paper, we presented STaRS, a new framework that
is both scalable and flexible to support the simulation of a
rich set of realistic taxi ride-sharing scenarios. The scalability
properties of the framework make it possible to run large-
scale studies that explore a wide range of what-if scenarios
through parameter sweeps. We have shown that this model
attains a good balance between simplicity and expressive-
ness. Another important contribution of this work is the
novel shortest path indexing scheme where we make use of
cache-coherent layout to speed up shortest path queries sub-
stantially. The implementation of our simulation model is
fully integrated with Hadoop’s MapReduce, thus, enabling
a variety of batch analysis tasks on taxi ride sharing. We
applied the model to NYC taxi data and presented a case
study that illustrates the capabilities and effectiveness of our
system and design decisions.

There are several avenues we plan to pursue in future
work. Our current shortest path indexing technique main-

tains a full distance matrix in memory. Though this could
be mapped on disk, the storage size (O(|V |2)) will not scale
well for a large road network. We would like to experiment
with a tiled caching strategy where we only keep the dis-
tance matrix for the most popular intersections and perform
full shortest path computation for less popular nodes. In
addition, we would like to implement a load balancer for
the shortest path queries where the shortest path database
could be located on a separate machine/cluster. This would
allow us to make better use of the computing resources
when having multiple simulator instances.
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