2016 IEEE International Conference on Big Data (Big Data)

Urban Human Mobility Data Mining:
An Overview

Kai Zhao!, Sasu Tarkoma?, Siyuan Liu®>* and Huy Vo'»®

LCenter for Urban Science and Progress, New York University
2Department of Computer Science, University of Helsinki
3Smeal College of Business, Penn State University
4Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
SDepartment of Computer Science, the City College of New York
{kai.zhao, huy.vo} @nyu.edu

Abstract—Understanding urban human mobility is crucial for
epidemic control, urban planning, traffic forecasting systems
and, more recently, various mobile and network applications.
Nowadays, a variety of urban human mobility data have been
gathered and published. Pervasive GPS data can be collected by
mobile phones. A mobile operator can track people’s movement
in cities based on their cellular network location. This urban
human mobility data contains rich knowledge about locations
and can help in addressing many urban challenges such as traffic
congestion or air pollution problems. In this article, we survey
recent literature on urban human mobility from a data mining
view: from the data collection and cleaning, to the mobility
models and the applications. First, we summarize recent public
urban human mobility data sets and how to clean and preprocess
such data. Second, we describe recent urban human mobility
models and predictors, e.g., the deep learning predictor, for
predicting urban human mobility. Third, we describe how to
evaluate the models and predictors. We conclude by considering
how applications can utilize the mobility models and predictive
tools for addressing city challenges.

Index Terms—human mobility; spatio-temporal data mining;
machine learning; smart city

I. INTRODUCTION

Urban human mobility pertains to how people move in
cities, for example, characterizing mobility patterns such as
walking home, driving to working places or utilizing public
transportation. Understanding human mobility is crucial for
epidemic control [1], [2] urban planning [3], [4], [5], traffic
forecasting systems [6], [7], [8] and, more recently, various
mobile and network applications [9], [10], [11]. Nowadays, a
variety of urban human mobility data have been gathered and
published. The pervasive GPS data can be collected by mobile
phones. A mobile operator can track people’s movement in
cities based on their cellular network location. This urban
human mobility data contains rich knowledge about locations
and can help in addressing many urban challenges such as
traffic congestion or air pollution problems.

In this article, we survey recent literature on urban human
mobility from a data mining view (see Fig. 1). According to
Fayyad et al. [12], a knowledge discovery process based on
data mining or machine learning methods includes:

1) Finding target data. We summarize recent public urban
human mobility data sets in Section II.

2) Data cleaning and preprocessing. We show how to
clean and preprocess the mobility data in Section III.

3) Exploratory model selection. We describe recent urban
human mobility models in Section IV.

4) Searching for patterns of interests using data mining
or machine learning methods. We describe and classify
recently proposed predictive algorithms for urban human
mobility, e.g., the Long-Short-Term-Memory (LSTM)
predictor [13], in Section V.

5) Evaluating the mined patterns. We show how to
evaluate the models and the predictors in Section VI.

6) Acting on discovered knowledge. We examine appli-
cations using the mobility models and predictive tools
for addressing urban challenges in Section VII.

To the best of our knowledge, this is the first article summa-
rizing the overall urban human mobility data mining process,
from the data collection and cleaning, to the mobility models,
and applications.

Human mobility has been studied for a very long time. In
1885, the publication of The Laws of Migration [14] in the
Journal of the Royal Statistical Society can be considered as
the first modern attempt to understand human mobility. Due to
the significant growth of mobile phones, the study of human
mobility has significantly changed. Mobile phones utilize cell
tower information and the Global Positioning System (GPS)
for fine-grained location tracking. Billions of people carry
their phone every day, which provides a large amount of
data on human movement. The growing volumes of urban
mobility data being collected and made available open up new
opportunities for modeling and predicting the urban human
mobility more accurately. We summarize recent public urban
human mobility data sets in Section II and the methods for
cleaning and preprocessing such data sets in Section III.

The ability to model and predict urban human mobility
is a fundamental problem in mobile computing and wireless
networks. An accurate location predictor can improve the
performance of many mobile applications as well as the
infrastructure. For example, accurate location prediction is
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Fig. 1: The process of urban human mobility data mining.

vital for enabling autonomous vehicles and making them safe,
and optimizing wireless base station performance. Another
example is that knowledge on where the people would visit
in a city can be advantageous to both taxi drivers and taxi
companies. Taxi drivers can drive to areas where there is a
big demand of taxi services if the urban human mobility can
be correctly predicted. The taxi companies (e.g, Uber) may re-
allocate their taxis in advance to meet the service demand of
passengers in a region. The growing volumes of urban human
mobility data set can help us modeling and predicting the
human mobility more accurately.

An urban human mobility model captures the basic proper-
ties and features of human movement using mathematical or
physical models, such as Lévy Walks, for the simulation and
prediction of human mobility in cities. One of the first large
scale human mobility modeling studies based on big urban
data set was published in Nature in 2008 [15]. By studying cell
phone user’s locations it was shown that trajectories in human
mobility have statistically similar features to Lévy Walks.
Other urban human mobility models that are not based on Lévy
Walks (e.g., the radiation model [16]) have been proposed
recently. We summarize recent urban human mobility models
in Section IV.

Urban human mobility prediction pertains to the estimation
of the next location that a person will visit in a city. It
has been observed that urban human mobility exhibits strong
regularities [15]. For example, people usually go to work
during daytime on weekdays, and go shopping after work.
Each person has a significant probability to return to a few
highly frequented locations such as home or working places.
Many of recent urban human mobility predictors try to cap-
ture such spatial-temporal regularities. We summarize recent
human mobility predictive algorithms in Section V.

The evaluation of the proposed mobility models and pre-
dictors usually involve multiple factors: the error metrics,
the computing performance or the feedback from domain
experts. The error metrics such as symmetric Mean Absolute
Percentage Error (SMAPE [17]) are often used to evaluate the
errors of the predictive algorithms to the ground truth data.
We show how to evaluate the proposed mobility models and
predictors in Section VI.

The urban human mobility models and predictive tools can
help us in many applications in addressing the urban prob-
lems. For example, while building Mobile Ad Hoc Networks
(MANET), previous research usually use a synthetic model
such as the Random Way Point (RWP) model. Later studies
find that human mobility actually follow the Lévy Walk model.
The routing performance in a RWP model in MANET studies
tends to be overestimated compared to Lévy Walk based
models [18]. We summarize recent urban applications based
on the latest urban mobility models and predictive algorithms
in Section VIL

The contribution of this article is mainly threefold:

o We summarize recent studies on urban human mobility
from a data mining view: from the data collection and
cleaning, to the mobility models, and the applications.
To the best of our knowledge, this is the first article
summarizing recent urban human mobility studies from
the overall data mining process.

o We describe the urban human mobility models from both
the complex network (Physics) and machine learning
(Computer Science) view. Current surveys mainly classify
and describe mobility models or predictive tools either
from the physicist’s view, or from the computer scientist
view. Our paper provides a unified view to the topic.

e We classify and describe recent public urban human
mobility data sets, and how we can use such data sets
for building mobility models or validating the prediction
results. In addition, we provide a mathematical synthesis
for the well-known models and predictors. There is still
significant potential for high impact research in the area.

II. URBAN MOBILITY DATA SETS

A variety of urban human mobility data have been gath-
ered and published, due to the significant growth of sensing
technologies and large-scale computing infrastructures. This
urban human mobility data contains rich knowledge about
locations and can help in addressing many urban challenges.
For example, understanding human movements inside a city
can help forecasting of the traffic [8]. Another example is that
we can identify the functions of locations by the means of
the transitions between these locations [4], [10], e.g., people



Relative Location Individual Mobility Aggregated Mobility
Experimental data set INFOCOMO6 Reality UCSD Geolife | Nokia MDC Rome San Francisco | T-Drive | NYC Yellow Taxi
Location Barcelona Boston San Diego | Beijing Geneva Rome San Francisco | Beijing New York
Context settings Conference Campus Campus City City City City City City
Number of samples 24 M 11 M 11M 21 M 17 M 11 M 21 M 17M 868 M
Localization Technology Bluetooth GSM WiFi GPS GPS GPS GPS GPS GPS
Participants 78 97 274 182 200 536 316 10,357 13,237
Duration of trace 4 days 9 months | 2 months 5 years 1.5 year 1 month 1 month 1 week 7 year
Sampling interval 120s 300s 120s 1-5s 10s 64s 9s 177s Is

TABLE I: Urban Human Mobility Data Sets

usually go to work during daytime on weekdays, and visit
shopping centers after work.

The main human mobility data sets are recorded according
to: 1. relevant location with access points (Bluetooth or WiFi
direct access points, Celluar Tower, etc.), 2. GPS information
by individual devices, 3: Aggregated GPS points recorded by
vehicles such as taxis or buses. In this article, we mainly
summarize the available public data sets falling in these three
categories (see Table I).

A. Relative Location Data Sets

The relative location data sets collect the proximity informa-
tion of a mobile device (e.g., mobile phone) carried by a person
to the access points (cellular towers or a WiFi access points).
If we know the location of the access point, we can infer
the individual relative location. The advantage of the access
point data sets is that they contain information pertaining to
the social networks of a person. For example, two persons
can be considered as friends or acquainted if they stay at the
same location for a long time [19]. The disadvantage is that
the granularity of the access point data sets is usually low,
a cellular tower location accuracy is usually 2-3 kilometers,
much larger compared to the GPS location. It should also
be noted that mobile operators are typically not willing to
share their data sets due to privacy issues. Privacy-enhancing
technologies aim to solve such problem [20]. Mir et al. [21]
propose a method for generating synthetic Call Detail Records
(CDRs), to capture the mobility patterns of real metropolitan
populations while preserving privacy. The accuracy of their
method has been validated against billions of relative location
samples for hundreds of thousands of cell phones in the New
York and Los Angeles metropolitan areas.

Here we briefly introduce three real-world access point
mobility data traces: (i) The Infocom06 data set [19] contains
opportunistic Bluetooth contacts between 98 mobile devices in
a conference in Barcelona, 78 of which were distributed to the
participants and 20 of which were static. The relative location
of the 78 participants to the 20 static devices were recorded,
from which we can infer the location of each participant. (ii)
The MIT Reality trace [22] comprises 95 participants carrying
GSM enabled cell-phones over a period of 9 months. The
cellular tower location were also provided by the data set.
(>iii) In the UCSD data set [23], 274 WiFi-enabled PDAs were
respectively used by 274 freshmen to log nearby Access Points
for an 11-week period between Sep 22, 2002 and Dec 8, 2002.

B. Individual Mobility Data Sets

Instead of logging the relative locations to the access points,
the individual mobility data sets record the GPS position of
each participant. This is usually the best data set for modeling
the individual mobility. However, due to privacy issues, it is
hard to collect such data sets at large scale. Individual mobility
data can reveal the everyday behavior of the people: where
they live, where they work, where they have dinners, and so
forth. All this information is related with the private personal
life and could be potentially lead to undesirable and unlawful
consequences. Many privacy-enhancing technologies for the
individual mobility data have been proposed, see the survey
from Calabrese et al. [20] for an overview of recent methods.

Here we introduce two public individual mobility data sets:
(1) Geolife [24] is a public data set with 182 users’ GPS
trajectories over five years (from April 2007 to August 2012)
gathered mainly in Beijing, China. This data set contains over
24 million GPS samples with a total distance of 1,292,951
kilometers and a total of 50,176 hours. It includes not only
daily life routines such as going to work and back home in
Beijing, but also some leisure and sports activities, such as
sightseeing, and walking in other cities. The transportation
mode information in this data set is manually logged by the
participants. (ii)) The Nokia MDC data set [25] is a public
data set from Nokia Research Switzerland that aims to study
smart-phone user behavior. The data set contains extensive
the smartphone data of two hundred volunteers in the Lake
Geneva region over one and a half years (from September
2009 to April 2011). This data set contains 11 million data
points and the corresponding transportation modes.

C. Aggregated Mobility Data Sets

Public transportation data set, such as bus data, taxi data
or subway data represents the aggregated human mobility.
Take the taxi data set as an example, it usually contains the
following information: taxi id, timestamp and taxi position
(longitude, latitude). In the taxi mobility patterns, the drivers
typically either move to pick up or drop off customers, or stay
in parking areas while waiting for new customers. Thus the
pick-up location and drop-off location can be considered as
the trip origin and destination for one person.

Here we introduce four public aggregated mobility data
sets: (i) The San Francisco data set [26] is a public data set
from the Exploratorium project that aims to study the invisible
economic, social, and cultural trends of the city. The data



set contains extensive GPS data of five hundred Yellow Cab
vehicles in the San Francisco region over one month (from
17th May 2008 to 10th June 2008). This data set contains
11 million data points and the corresponding timestamps. (ii)
The Rome data set [27] is a public data set containing mobility
traces of 316 taxi cabs in Rome over 30 days. Each taxi driver
had a tablet that was set to retrieve the GPS position every 7
seconds after which the position was sent to a central server.
(iii) The Beijing data set [28] is a public data set gathered
by Microsoft Research Asia. It records the GPS trajectories
of 10,357 taxis in Beijing from Feb.2 to Feb.8, 2008. There
are about 15 million GPS points in this data set, and the total
distance for each trajectory reaches up to 9 million kilometers.
(iiii) The New York Taxi & Limousine Commission (TLC)
captures the detailed information about each trip through the
meters installed in each vehicle, and store them in the public
yellow taxi data set [29]. Every day there are over 500,000
taxi trips serving roughly 600,000 people in New York City.
Each trip consists of two spatial attributes (pickup and dropoff
locations), two temporal attributes (pickup and dropoff times),
and additional attributes including taxi identifier, distance
traveled, fare, medallion code, and tip amount.

III. URBAN MOBILITY DATA
CLEANING AND PREPROCESSING

The collected urban mobility data sets are not always
accurate. For example, the GPS samples collected are heavily
influenced by the tall buildings in cities and thus can be
inaccurate. The quality of the GPS receiver algorithm might
also lead to inaccurate GPS positions. Fig. 2 displays such
errors. We plot the New York yellow taxi GPS samples and
find that many of the taxi GPS samples are in rivers, in the
ocean and even outside North America. In this section, we
introduce the data cleaning and preprocessing methods for
urban human mobility data.

A. Data Cleaning

Freire et al. survey the challenges and solutions while
cleaning urban mobility data sets [29]. Visualization tools
is an effective mechanism to identify the GPS errors. To
remove GPS inconsistencies, one common method is to use the
geographical boundaries to clear all the GPS samples that out
of the boundary. Besides the spatial errors, another common
problem is that the temporal recorded might also contain some
errors. For example, while analyzing the taxi data in New
York City, there is a large number of overlapping trips for
the same taxi. That is, for a given taxi, a new trip starts
before the previous trip has ended. The reason behind this
error is unclear: some trips may overlap due to a device error,
or simply because the taxi driver forgot to log the end of a
trip after dropping off passengers. Nevertheless, they certainly
affect further analysis on the data. Such inconsistencies must
be removed before using the data set.

B. Data Preprocessing

After data cleaning, the next step is to preprocess the data
for the specific usage. For example, if we want to identify the

o)

(c)

Fig. 2: Inaccurate New York taxi GPS points (a) in rivers, (b)
in the ocean, and (c) outside North America [29].

number of people leaving a building block, we need to map
the taxi pick-up samples with the associated building blocks.
R-tree [30] is often used for mapping the GPS point with the
shape file to identify the associated building blocks. Zheng
et al. [31] give an overview of the urban data preprocessing
algorithms such as Hidden Markov Models [32].

Currently the mapping of human mobility data to geospatial
features such as building blocks, roads or neighborhoods,
requires a lot of processing given the volume of the data
set. E.g., in New York City, every day there are over 500,000
taxi trips serving roughly 600,000 people [29]. The big data
processing platform such as Spark and Hadoop are commonly
used for dealing with such huge data sets. It has been found
that it takes about ten minutes for a R-tree based algorithm to
map matching the 14 million GPS samples with the associated
building blocks [33].

IV. URBAN MOBILITY MODELING

The growing volumes of urban human mobility data sets
can help us modeling and predicting the human mobility more
accurately. In this section we mainly summarize and compare
recent urban human mobility models (see Table II). Random
Way Points (RWP) [34], Lévy Walks [18] Gravity Model
[6] and Radiation Model [16] are the most commonly used
mobility models.

A. Synthetic Mobility Model

Synthetic mobility models are created without the use of
observation, based only assumptions about certain properties
of movement, such as changes in direction or changes in flight
length. A flight is defined as a trip of a person from one
location to another without pause.

Here we introduce two synthetic mobility models: In RWP
model [34], the mobile nodes move randomly and freely
without any restrictions. The destination, speed and direction
are all chosen randomly and independently of the other nodes.
In Brownian Motion (BM) [35], the mobile nodes move with
a mean flight and a mean pause time between flights. A flight
is defined as a trip of a person from one location to another
without pause. In BM, the flights are normally distributed.



Publications Data Set Human Mobility Model Transportation Mode Explanation
(Flight distributions)
RWP [34] None Random None None
BM [35] None Normal None None
LEVY [36][18] Aggregated Mobility Power-Law None Levy Walk
GM [15] Relative Location, 2-3 km Power-Law and Gaussian model None Temporal and spatial regularity
TRAF [37][38] | Aggregated Mobility , 5-10 m Power-Law None Hierarchical Traffic systems
AGI [39] Individual Mobility Power-Law Yes Aggregated individual mobility
TRANS [40] Individual Mobility Power-Law and Yes, multiple Lévy Walks decomposed
log-normal transportation modes by transportation modes
EXP [41], [42] Aggregated Mobility Exponential Yes, taxi Population Density
Gravity [6] Aggregated Mobility Gravity Model Yes Population
Radiation [16] Relative Location Radiation Model Yes Population and opportunities
coMobile [43] Individual Mobility Multi-view Learning Yes None

TABLE II: Comparison of recent urban human mobility models

Fig. 3 (a) and (c) shows the sample trajectory of RWP and
BM respectively.

Fig. 3: Sample trajectory of (a) BM, (b) Lévy Walks and (c)
RWP [44].

B. Lévy Walks

Both the RWP and BM are not based on the real human
mobility studies so that they do not reflect how people move
in real life. Recent data-driven research has shown that trajec-
tories in human mobility have statistically similar features as
Lévy Walks by studying the tracing of bank notes [36], cell
phone users’ locations [15] and GPS traces [18], [39], [37],
[38]. According to the Lévy Walks model, human movement
contains many short flights and some long flights (see Fig. 3
(b)). The flight length [ follows a power-law distribution,

P(l) ~ 10+5) (1)

where the displacement exponent 3 < 2.

Although recently human mobility has been empirically
observed to exhibit Lévy flight characteristics and behaviour
with power-law distributed jump size [39], [37], [38], the
fundamental mechanisms behind this behavior has not yet
been fully explained. Later studies propose explanations for
the emergence of the Lévy Walks pattern:

1) Gaussian Model: Gonzalez et al. [15] model human
mobility as a stochastic process centered around a single
location. They indicate the the power-law jump size distri-
bution is due to the convolution between the statistics of the
motion of individuals and the population heterogeneity. That
is, each individual mobility follows the power-law distribution
and there is also a population-based heterogeneity coexists
between individuals.

2) Hierarchy Traffic System: The hierarchy of traffic net-
works [37] or road networks [38] are also possible reasons
behind the Lévy Walks. Han et al. [37] model the human
mobility as a random walk process in hierarchical Euclidean

/ networks and such system can reproduce the statistics of

Lévy Walks pattern. Each node in the hierarchical network
represents a city such as first-layer city or second-layer city.
The edges represent the connection between the cities. Their
model implies that the human mobility are strongly affected
by the geographical structure of traffic systems. Similar results
have also been found by Jiang et al. [38] while examining the
human mobility on the street networks.

3) Aggregation of Individual Mobility: In [39] Yan et al.
observe that the individual human mobility patterns do not
follow Lévy Walks and Lévy Walks are due to the aggregation
of individual mobility patterns. The aggregated displacement
distribution can be explained by the mixed nature of human
mobility under the maximum entropy principle. The maximum
entropy principle also predicts that the human mobility with
the single transportation mode follows the exponential distri-
bution, which is consistent with other findings [41], [42].

4) Decomposition by Transportation Modes: Intuitively,
these long and short flights in the Lévy walk model reflect
different transportation modalities. The short flights might be
associated with walking or bicycling mode, whereas the long
flights might be associated with the subway or train trips.
Zhao et al. [40] propose to explain the Lévy walk behaviour
by decomposing the trips into different classes according
to different transportation modes, such as Walk/Run, Bike,
Train/Subway or Car/Taxi/Bus. They observe that human mo-
bility can be modelled as a mixture of different transportation
modes, and these single transportation movement patterns can
be approximated by a lognormal distribution, rather than a
power-law distribution. They demonstrate that the mixture
of the decomposed lognormal flight distributions associated
with each modality is a power-law distribution, providing an
explanation of the Lévy walk human mobility.

C. The Exponential-scaling Human Mobility Model

Recent research results [41], [42] investigate the urban
human mobility of a single transportation mode such as taxi



and they found that the scaling of human flights is exponential:
P(l) ~e M 2)

In [41] Liang et al. propose that this is possibly because
few people tend to travel long distances by taxi due to
economic considerations. In [42] they explain the exponential
law of urban human mobility as a result of the exponential
decrease in average population density in urban areas. They
find that the empirical and analytical results indicating the
same exponential decaying rate between the flight length and
the population density.

D. Gravity Model

Jung et al. [6] investigate the traffic flows of the Korean
highway system for 30 selected cities. They find that there
is a positive correlation between the traffic flow and and the
population of two cities. The traffic flows between city ¢ and
J, T;j, form a Gravity model:

P, P;

Tj 3)
T

where P; and P; are the population of city ¢ and j and r;; is

the distance between ¢ and j.

T;; =

E. Radiation Model

One big flaw with the Gravity model is that it can not
describe the number of individual flows in both directions
between two locations. To address this problem, Simini et
al. [16] propose the radiation human mobility model. In this
model, the number of trips 7;; from location ¢ to j is:

PP;
(Pi + Pi) (P + Pj + Pyj)

Here P; and P; are the population of location ¢ and
j. T; is the total number of trips starting from . Pj; is
the total population of locations (other than ¢ and j), from
which the distance are less than or equal to the distance d;;
between 7 and j. They observe that the Radiation model can
significantly improve the accuracy of predictive tools in a wide
range of phenomena, from long-term migration patterns to
communication volume between different regions.

T, ; =T 4)

F. Multi-view Learning Model

Existing urban human mobility are mostly driven by data
from a single view, e.g., data from a single transportation view
[41] such as taxi, bus, subway or a cellphone view [15] such
as call records. To address this issue, Zhang et al. [43] propose
a new human mobility model based on a multi-view learning
framework. They find that the new multi-view human mobility
model outperforms a single-view model by 51% on average.

They improve the performance of single-view model based
on tensor decomposition with correlated context. Take the call
record data as an example, they construct a three dimensional
tensor, an entry in this tensor represents [user id, time, loca-
tion] (see Fig. 4). Due to the sparsity of the call records, they
use the tensor decomposition methods to decompose the tensor

into a core tensor, with small latent factors. Then they try to
optimize the decomposition problem by reducing the errors
and using the regularization function to avoid over-fitting. The
obtained approximate tensor can improve the accuracy of each
single-view model.

A . . dS
= =7 [User, Location, Time]
1< /
g . d { K
=) ~ . /4/L\‘
g .
5 LS N
o ) y
S .\/&e%\
Spatial Units <

Fig. 4: Tensor decomposition for single-view mobility model-
ing [43].

Then they integrate these improved single-view human
mobility models together for multi-view learning to iteratively
obtain mutually-reinforce knowledge. A human mobility graph
is formed, which is a combination of many single-view human
mobility graphs such as call records or transportation data.
Then they use the iterative multi-view learning method to
obtain the ground truth of the edges in the human mobility
graph, that is the volume of passengers traveling from one
place to another. After that, a human mobility graph is formed
with high accuracy for modeling urban human mobility.

V. URBAN MOBILITY PREDICTION

Urban human mobility prediction pertains to the estimation
of the next location that a person will visit in a city. Urban
human mobility exhibit strong temporal regularities, e.g., peo-
ple usually go to work during daytime on weekdays, and go
shopping after work. Marta et al. observe that the trajectories
in urban human mobility exhibit strong regularities by studying
cell phone user’s locations [15]. Each person has a significant
probability to return to a few highly frequented locations such
as home or working places.

In Fig. 5 we show the directions of taxi flow from the lower
Manhattan to other regions for three time steps. The taxi flow
indicates the aggregated human mobility. At 8§ am we observe
that the probability of taxis moving beyond Midtown is low.
However, after 4 pm the probability of taxis moving towards
Upper Manhattan is high. This is mainly due to the fact that
the lower Manhattan is mainly a working place and Upper
Manhattan (e.g., Upper East) is mainly a residential place.
People tend to go home after work and the probability that
the taxi moves from Lower to Upper Manhattan increases.

Such spatial-temporal regularities can be utilized for pre-
dicting urban human mobility using data mining methods.
Here we give a formal definition of the urban mobility
prediction problem: suppose d; represent the person’s location
at time j (1 < 7 < n). For this person, we have the historical
location visits as a sequence D,, = didads...d,. Given
D,, = dydads . .. d,, our goal is to predict the person’s next
location d,y; at time n + 1. Different predictors have been



Publications Data Set Features Methodology Approaching error bound | Computation Time
Markov [45] Relative Location Location, time Markov Yes Fast

LZW [45] Relative Location Location, time Compression-based No Fast
ARIMA [33] | Aggregated Mobility Location, time Time-series Unknown Relatively Fast
LSTM [45] Individual Mobility Location,time,transportation mode deep learning Unknown Slow

TABLE III: Comparison of recent urban human mobility predictors.
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Fig. 5: Directions of taxi flow at different time of the day.
Note that the taxis tend to cross into Upper Manhattan only
in the latter part of the day, e.g., after 4 pm. The direction is
color encoded from red to yellow [46].

proposed for predicting the human mobility, in this paper
we mainly survey the Markov-based predictors, compression-
based predictor, time-series-based predictor and deep learning
predictor (see Table III). The evaluation of the predictors can
be found in Section VI.

A. Markov Predictor

In this subsection, we discuss the Markov-based predictor.
The order-k O(k) Markov predictor can be used for predicting
the future location of a user from the k& most recent location
history sequence dy,_g+t1,dpn—k+2,---,dy [45]. The location
that the person visits during time j can be viewed as a random
variable X;. Let X donates the sequences of random
variable X;, X1, Xj42,...,X; for 1 < j < k < n rep-
resenting the person’s past locations. Considering the person’s
visiting history D,, = dydads...d, and N as the set of all
possible locations that the person can visit, following Markov
assumption we have

P(Xn—H = B‘Xn = Dn) &)
- P(X7L+1 - ﬁ‘X’rL—k-i-l,n - C) (6)
= P(Xjirr1 = B X 11,54k = ©). @)

Here P(X,,+1 = B|X, = D,,) means that the probability of
the person is at the location [ during the time interval n + 1.
c is the sub-sequence of the previous human mobility history
where dn7k+1dnfk+2 N dn = j+1dj+2 . dj+k = C.

B. Compression-based Predictor

The LZW predictor is based on the Lempel-Ziv-Welch com-
pression algorithm (LZW) [47], [45]. Given a person’s visit
historical sequence D,,, LZW algorithm partitions D,, into
distinct subsequence s, 51, 52, 53, - . . S;,, Where s; represents

the shortest subsequence starting at the time j which does not
appear from 1 to 7 — 1. We have the LZW predictor:

N2 (58, Dn,
P =010 = S 5

Here P(X,11 = B|D,,) represents the probability of the
person that is at the location 3 during the time interval n + 1.
% represents the probability of the subsequence

sm3 occurs in the mobility sequence s,.

®)

C. Time-series Predictor

Li et. al [48] investigate human mobility patterns in an
urban taxi transportation system. They propose an improved
Auto-Regressive Integrated Moving Average (ARIMA) based
predictive algorithm to forecasting the spatial-temporal varia-
tion of passengers in hotspots in a city. ARIMA is a classical
approach for time series analysis. The ARIMA predictor first
build a mathematical model with the historical human mobility
data for representing the regular pattern of a time series. Then
it use this model and the historical values forecasting the future
value. We give a basic ARIMA predictor below. Given the
urban human mobility data d;dods . ..d,—1, the ARIMA is
going to predict d,, = /3 by solving the following equations:

P(B)V?B = 0(B)a; 9)

Here B is the lag operator, ¢(B) is the auto-regressive pro-
cess, V7 is the differencing operator, §(B) is moving average
process, and a; is a random walk process. The predicted value
[ can be obtained from historical values didads...d, _1.

D. Deep Learning Predictor

Song et al. building a deep LSTM learning architecture (see
Fig. 6) for predicting the urban human mobility [13]. Recurrent
Neural Network (RNN) is able to capture the temporal and
spatial evolution of human mobility patterns. However, it has
been shown that the traditional RNN fail to capture the long
temporal dependency for the input sequence [49]. LSTM-a
special RNN architecture is developed for sequence prediction
tasks, which can learn the time series with long time spans
and determine the optimal time lags automatically. Given a
person’s observed mobility history data, they find that the
deep LSTM is able to predict his future movements and
transportation mode with over 80% accuracy.

VI. EVALUATING THE MODELS

The evaluation of the proposed mobility models and pre-
dictors usually involve multiple factors: the error metrics, the
computing performance or the feedback from domain experts.



|

|
| \
| Shared !
| T LST™ }
| Layers |
|
|
|
|
|

Fig. 6: Deep LSTM Learning Architecture for predicting urban
human mobility [13].

We summarize the common evaluation metrics here and also
apply some metrics to evaluate the predictors in Table III.

A. Error Metric

The error metrics such as SMAPE are often used for
evaluating the performance of different mobility models and
predictive algorithms. For example, Song et al. [13] compare
the prediction accuracy of the LSTM predictor (see Section
V-D) and Gaussian Model (see Section IV-B1) and they
observe that the LSTM predictor achieve better performance
than the Gaussian Model using sSMAPE.

1) Lower Bound of Predictive Errors: Song et al. [50]
introduced the limits of predictability II"™“* in urban human
mobility. They define the limits of predictability II"?* as
the highest potential accuracy (lower bound of errors) that a
predictive algorithm can reach for predicting human mobility.
The limits of predictability II"*“* is obtained by measuring the
entropy of the human mobility sequence considering both the
randomness and the temporal correlation of human movement.
They analyze 50,000 users mobility and find that there is a
potential 93% predictability.

The limits of predictability captures the degree of the
temporal correlation in human mobility [51]. For most people,
their mobility patterns are governed by a certain amount of
randomness (e.g., unexpected events) and some degree of
regularity (e.g., weekly patterns), which can be exploited for
prediction. For a person with II"™%* = 0.3, that means that at
least 70% of the time the his location appears to be random,
and only in the remaining 30% of the time can we hope
to predict the location that he appears. In other words, no
matter how good the predictive algorithm is, we cannot predict
with better than 30% accuracy the future location of a person
with II™%* = (0.3. II™** represents the fundamental limit for
prediction accuracy of the human mobility.

2) Approaching the Lower Bound of Errors: Lu et al. find
that the limits of predictability (the lower bound of errors)
is not only a fundamental theoretical limit for the potential
predictive algorithm, but also an approachable target for actual

prediction accuracy [51]. They implement a set of the Markov
predictors to predict the actual location visited by each user.
Results show that the order O(1) Markov predictor can ap-
proach the limits. The higher order Markov predictor does not
generate improved prediction accuracy when compared to a
O(1) Markov predictor (see Fig. 7).
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Fig. 7: (a) The accuracy of predictive algorithms for each day
based on historical data, (b) the accuracy increases with the
length of historical trajectories [51].

B. Performance

Beside the prediction errors, the computation performance
should also be considered while evaluating the models and
predictors. First, the mobility data is growing significantly
and so is the computation time for processing such big data.
Second, some of the urban mobility based applications such
as the traffic forecasting system require the real-time output.
Scalability and computation time [45] are the two performance
metrics often to be examined during the evaluation. For
example, it has been fond that [33] the Markov predictor
computation time is about 0.03% of the deep learning method.
Choosing the algorithms that is able to scale up and compute
efficiently while maintaining prediction accuracy will save a
lot of computation time.

C. Domain Knowledge

Urban human mobility relates to many urban applications,
such as urban traffic analysis. To validate the accuracy of
the model, it is often required to have the domain experts
in the loop. For example, as shown in Fig. 5, we observe
that the human mobility flow from the Lower Manhattan to
Upper Manhattan only occurs after the working time. Domain
experts from Department of Transportation or TLC can verify
such mobility patterns based their previous experience.

VII. URBAN MOBILITY APPLICATION

The urban human mobility models and predictor summa-
rized above can help in addressing many urban problems. In
this section, we give four examples using the urban mobility
models for solving urban problems:

1) Traffic Forecasting: Urban traffic anomalies are usu-
ally caused by accidents, control, protests, sport events, cel-
ebrations, disasters and other events. Pan et al. [8] pro-
pose a method for detecting and describing such anomalies
by analysing human mobility patterns. They evaluate their



mobility-based system with a GPS trajectory data set generated
by over 30,000 taxicabs in Beijing. The evaluation results
show significant advantages over the traditional traffic volume-
based anomaly detection methods regarding accuracy and
computation performance.

2) Air Pollution Detection: Zheng et al. [9] observe that
there is a positive correlation between the concentration of
PM;, in a region and the number of people arriving at and
departing from that region. While there are limited air-quality-
monitor-stations in a city, the urban human mobility model can
be an very important feature inferring the real-time and fine
grained air quality information.

3) Functional Region Detection: There are different func-
tional regions in a city, e.g., residential areas, business districts
and educational areas. The functions of a region have a strong
correlation with the urban human mobility. In the workdays
people usually go the working places in the morning and return
to residential places in the afternoon. Jing et al. [4] use a
topic-based inference model for inferring the functions of each
region with urban human mobility patterns.

4) Mobile Ad Hoc Networks: In Mobile Ad Hoc Networks
(MANET), whenever mobile devices (vehicles, phones, etc.)
encounter each other, they can exchange content via short-
range communications (e.g., Bluetooth or WiFi) for increasing
the network throughput [52]. Since people carry their mobile
devices everywhere everyday, human mobility model plays an
important role in such network. The choice of the mobility
model has a significant impact on the behaviour and perfor-
mance of a MANET algorithm. Lévy Walks provide a more
accurate mobility model compared to other existing models.
The heavy-tail tendencies of the Lévy Walks model induce
heavy-tail routing delays and throughput in MANET [18].

VIII. RELATED SURVEYS

Several surveys have been presented regarding urban human
mobility in the past few years. Campl et al. [53] give an
overview of several synthetic mobility models such as RWP
and BM back in 2002. Aschenbruck et al. [54] review and
discuss several publicly available mobility data sets. Musolesi
et al. [55] survey the mobility models that utilize information
from social networks. Gongalves et al. [56] review the urban
human mobility models from the physicist’s view. Hess et al.
[57] provide a data-driven human mobility model survey for
mobile networking applications. They take an engineering ap-
proach and discuss the steps of model creation and validation.

The difference between our survey and previous works is
that, many of them focus on a single process, e.g., finding
human mobility data sets [54] or human mobility models
[57]. No existing articles summarize urban human mobility
studies from the overall data mining process. We summarize
urban human mobility studies from a data mining view: from
the data collection and cleaning, to the mobility models, and
the applications. In addition, we describe the urban human
mobility models from both the complex network (Physics) and
machine learning (Computer Science) view. Current surveys
mainly classify and describe mobility models or predictive

tools either from the physicist’s view [56], or from the
computer scientist view [55]. Our paper provides a unified
view to the topic.

IX. CONCLUSION

Today, 50% of the world’s population lives in cities, rising to
70% by 2050; North America is already 80% in cities and the
number will be 90% by 2050 [58]. Understanding urban hu-
man mobility is crucial for epidemic control, urban planning,
traffic forecasting systems and, more recently, various mobile
and network applications in cities. The growing volumes of
urban mobility data being collected and made available open
up new opportunities for modeling and predicting the urban
human mobility more accurately. In this paper, we survey
recent studies on urban human mobility from a data mining
view: from the data collection and cleaning, to the mobility
models, and the applications.

Due to page limits, some aspects are not covered in this
paper, such as the summary of the mobility data privacy
protection technologies [21] or the recent map matching
algorithms [32]. In the future work, we plan to extend the
current work by adding those missing components. Besides,
a benchmark across the surveyed models and predictors will
also be implemented in future works.
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