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Abstract—There are increasing volumes of spatio-temporal
data from various sources such as sensors, social networks and
urban environments. Analysis of such data requires flexible
exploration and visualizations, but queries that span multiple
geographical regions over multiple time slices are expensive to
compute, making it challenging to attain interactive speeds for
large data sets. In this paper, we propose a new indexing scheme
that makes use of modern GPUs to efficiently support spatio-
temporal queries over point data. The index covers multiple
dimensions, thus allowing simultaneous filtering of spatial and
temporal attributes. It uses a block-based storage structure to
speed up OLAP-type queries over historical data, and supports
query processing over in-memory and disk-resident data. We
present different query execution algorithms that we designed to
allow the index to be used in different hardware configurations,
including CPU-only, GPU-only, and a combination of CPU and
GPU. To demonstrate the effectiveness of our techniques, we
implemented them on top of MongoDB and performed an
experimental evaluation using two real-world data sets: New York
City’s (NYC) taxi data – consisting of over 868 million taxi trips
spanning a period of five years, and Twitter posts – over 1.1 billion
tweets collected over a period of 14 months. Our results show that
our GPU-based index obtains interactive, sub-second response
times for queries over large data sets and leads to at least two
orders of magnitude speedup over spatial indexes implemented
in existing open-source and commercial database systems.

I. INTRODUCTION

The availability of low cost sensors such as GPS in vehicles
and mobile devices has led to an explosion in the volume of
spatio-temporal data. Location and time information is being
captured by a plethora of mobile applications such as Twitter
and Instagram. Governments and cities all over the world are
collecting and making available increasing volumes of data
that contain a spatio-temporal component, e.g., 311 complaints,
crime, transportation (subway, bus, taxi trips) and land-use
data [35]. In fact, a recent study that examined over 9,000 open
urban data sets found that over 50% of them contain spatial
information [5]. While these data open new opportunities to
advance science, to inform policy and administration, and
ultimately, to improve people’s lives, making sense of them
is very challenging. Visualization and visual analytics systems
have been successfully used to aid users obtain insights: well-
designed visualizations substitute perception for cognition,
freeing up limited cognitive/memory resources for higher-level
problems [33]. Such systems are therefore increasingly being
used to support data exploration. They allow users to formulate
queries and visually explore their results. But to be effective,
visualization systems must be interactive, requiring sub-second
response times [12], [30]. Liu and Heer [30] have shown
that even a 500ms difference can significantly impact visual

analysis, reducing interaction and data set coverage during
analysis, as well as the rate in which users make observations,
draw generalizations and generate hypotheses.

Having been designed for batch queries issued through a
text-based or terminal interfaces, existing relational database
technologies and business intelligence systems used for OLAP
analyses are not suitable for interactive tools [51]. Not surpris-
ingly, the problem of providing efficient support for visualiza-
tion [46] and interactive queries over large data has attracted
substantial attention recently (see e.g., [1], [6], [25], [26], [29],
[31], [45]). While previous approaches have targeted relational
data, in this paper, we address specific challenges that arise
with spatio-temporal point set data.

Motivating Example: Taxis and Tweets as Sensors in NYC.
The New York City Taxi and Limousine Commission (TLC)
collects information about taxi trips in the city. Each trip
consists of pickup and dropoff locations and times, along with
other relevant data such as the fare and tip. There are, on
average, 500 thousand trips each day, totaling over 868 million
trips in the past five years [43]. The availability of this data set
has generated enormous interest among traffic engineers and
social scientists, who are interested in studying various traffic
and economic trends (see e.g., [10], [40]). Queries of interest
typically span geographical regions over multiple time slices,
and include constraints on more than one spatial attribute in
addition to temporal constraints. For example, given the flat
fare for taxis to get to (from) the NYC airports from (to)
Manhattan, economists are interested in understanding taxi
trips originating and ending at airports, where the passengers
go, how long the trips take, and how these indicators behave
at different times of the day and on different days of the week.
If the trips take too long, it may be detrimental to drivers to
serve the airports, and either the existing flat fare policy should
be reconsidered, or the fare should be increased. An example
of such a query is shown in Figure 1(a). It asks for trips that
occurred between lower Manhattan and the two airports, JFK
and LGA, on all Sundays of May 2011.

Visual analytics tools are being developed to help domain
experts analyze these data and perform exploratory queries.
Users interact with the data through visualizations and their
actions are translated into queries issued to a database system
or specialized storage manager. Figure 1 illustrates two queries
that are visually specified using TaxiVis [13]. As shown in
Figure 1(a), a user can draw polygonal regions of interest,
place constraints on both pickup and dropoff locations, and
select the time period(s) of interest. Figure 1(b) shows a query
that selects all tweets posted in Manhattan in June 2013. Users
can refine the queries, selecting additional regions, stepping



(a) Taxi trips (b) Tweets (c) Queries in SQL-like syntax
Fig. 1. Typical spatio-temporal queries visually constructed with the TaxiVis tool [13] to explore (a) NYC taxi and (b) Twitter data. Spatial constraints are
specified by drawing arbitrary polygons. For taxi trips, arrows between the polygons are used to specify the pickup and dropoff regions. In (c), we show the
queries in a SQL-like syntax: the query on the left selects trips that occurred between lower Manhattan and the two airports on all Sundays in May 2011, while
the one on the right selects all tweets posted from Manhattan during June 2013.

through time, or performing parameter sweeps to compare
multiple data slices and study how patterns change over space
and time. These operations, which are commonplace in visual
analysis tools, lead to a high query rate. Coupled with the
stringent response times required by these tools, this makes
interactive execution for these complex queries challenging,
especially for large data sets.

Interactive Spatio-Temporal Queries: Challenges. Spatial
constraints can be specified as arbitrary polygons, and thus,
they require multiple (often millions of) point-in-polygon (PIP)
tests. Because the time complexity for each PIP test is linear
in the size of the polygon, these queries are very expensive to
compute. Consider the query in Figure 1(a). Assuming that an
optimal number of point-in-polygon tests are performed, i.e.,
they are done only on records that lie within the query polygon
corresponding to lower Manhattan, over 6.5 million such tests
have to be performed even though the query returns only
around 13,000 records. Thus, to attain interactivity, it is crucial
to reduce the number of PIP tests. For queries that refer to a
single spatial attribute, a spatial index helps reduce the number
of points to be tested. However, this is not the case for complex
queries that contain additional constraints on time or multiple
spatial attributes. For example, a selection from a spatial index
for trips in Lower Manhattan contains records corresponding
to all time steps (not just Sundays in May 2011), and for
trips with destinations other than the airports. Performing the
selection using an index over time is also inefficient: tests
need to be applied to all records returned, since there is no
spatial index on these records. Another alternative would be
to use multiple indices, one for each attribute. But besides the
unnecessary PIP tests from the index selections (as discussed
above), this also incurs an additional overhead: results coming
from different indices must be joined.

Contributions. To address these challenges, we propose
STIG (Spatio-Temporal Indexing using GPUs), an indexing
scheme that supports complex spatio-temporal queries over
large, historical data at interactive rates. Interactivity is attained
through a two-pronged strategy: (1) Simultaneous filtering over
multiple dimensions–by using a single index that covers mul-
tiple spatial attributes as well as other attributes such as time,
data can be simultaneously filtered over multiple dimensions,
reducing the number of costly PIP tests to be performed; (2)
Fast spatial operations using GPUs–the numerous PIP tests
are independent of each other. GPUs are used to substantially

speedup this embarrassingly parallel process.

STIG is a generalization of the kd-tree [7]. While kd-
trees have been widely used for in-memory processing, we
have extended them to support out-of-core query processing
and to leverage GPUs. STIG trees (stg-trees) consist of two
components: the tree-nodes that correspond to the kd-tree,
and a set of blocks that store the records. The block-based
storage has many benefits, notably: it enables out-of-core
execution of queries, and it leads to a small memory footprint,
making it possible to store the index in memory. As we
discuss in Section II, it also reduces the data transfer overheads
between the CPU and GPU, which is critical for efficient query
execution. We propose multiple query execution strategies
that can be used to support different system configurations,
including: only GPUs, only CPUs, and a hybrid combination
of CPUs and GPUs. The strategies can also leverage multiple
GPUs and the newly introduced dynamic-parallelism feature
present on newer NVIDIA graphics processors.

We evaluate the efficiency of STIG using a prototype
implementation in MongoDB [32]1 and queries over two large
data sets: NYC taxi trips and Twitter data. The NYC taxi
data consists of over 868 million records having two spatial
and two temporal attributes. The Twitter data has over 1.1
billion records, each containing one spatial and one temporal
attribute. Our results show that STIG running on GPUs leads
to substantial performance gains: it is at least 30 times faster
compared to a similar index implemented using just the CPU.
In addition, the index is scalable. Not only does it performance
increase with the number of GPUs, but also, query execution
times increase (almost) linearly with the result sizes. For
end-to-end query execution times, our prototype was at least
two orders of magnitude faster than existing open-source and
commercial database systems.

II. GPU-BASED SPATIO-TEMPORAL INDEX

In this work, we are interested in spatial queries that involve
point-in-polygon tests. These queries are expensive, especially
for polygons that have arbitrary structure. A single query
may require millions of such tests. Having multiple spatial
attributes, in addition to temporal constraints, further increases
the cost of executing these queries. As mentioned earlier, visual

1Code available at: https://github.com/harishd10/mongodb.git



Fig. 2. Kd-tree constructed for a set of 8 points in R2. We use color to
connect nodes in the tree to the corresponding lines that split the plane.

analysis tools typically generate multiple such queries through
user interaction. Thus, the operation of resolving whether a
data point satisfies the given polygonal constraints creates a
bottleneck, hampering the interactivity of these tools.
Leveraging GPUs to speedup spatio-temporal queries.
Current generation GPUs consist of thousands of parallel
processors. Leveraging the parallelism provided by the GPU to
execute a spatio-temporal query can help overcome the above-
mentioned bottleneck. However, doing so is challenging. While
a brute force parallel search over the entire data can be done,
this is inefficient especially for large data. In order to efficiently
leverage the GPUs, it is important that the following three
properties are satisfied by the indexing scheme:

P1. Minimize data transfer: the volume of data transferred to
the GPU must be minimized. GPU memory is limited, and
since the memory transfer overhead between the CPU and
GPU is significant, it can adversely impact the query execution
time. This problem is compounded for large data sizes which
require multiple data transfers during query execution;
P2. Maximize occupancy: to best utilize the GPU, the occu-
pancy of the GPU should be maximized, i.e. the number of
idle cores of the GPU should be minimized; and
P3. Minimize kernel synchronization: the number of GPU
kernel synchronizations should be minimized. GPU code is
typically executed as multiple kernels, and the execution
of the different kernels is synchronized on the CPU. This
synchronization between the kernels is a costly operation, and
having multiple such synchronizations can negatively impact
the query execution time.

In what follows, we describe the index structure that we de-
signed, keeping in mind the above properties, to support spatio-
temporal queries (Section II-A). The index is a generalization
of a kd-tree, and through the use of a block-based structure, it
can efficiently leverage the GPUs. A possible alternative was
to use a R-tree-based data structure for the index. However,
we chose the kd-tree for our index to avoid the overhead of
unwanted PIP tests induced by the overlapping regions among
the child nodes of a R-tree, which grows rapidly with the
increase in the number of dimensions (see Section V-D). The
index construction process is described in Section II-B, and its
space requirements are analyzed in Section II-C.

A. STIG

In this section, we first provide a brief overview of kd-trees,
and then describe in detail the structure of the index. For ease
of exposition, we assume that spatial attributes of the input
corresponds to 2-dimensional points. However, our index can
be easily extended to points in three or higher dimensions.

Fig. 3. Structure of the block-based STIG index. The index consists of
two parts. The tree nodes store the kd-tree. Each leaf node points to a block
containing records that satisfy the constraint given by the path from the root to
that leaf. Along with this pointer, each leaf node also stores the k-dimensional
bounding box that contains all the records in the corresponding leaf block.

Kd-trees. A kd-tree [7] is a binary tree used to store k-
dimensional points. Each non-leaf node in this tree splits the
points in its sub-tree along a hyper-plane. All points present
in the lower half-space defined by this hyper-plane are present
in the left sub-tree, while those in the upper half-space are in
the right sub-tree. Let {x1,x2, . . . ,xk} denote the k axes of the
Euclidean space Rk. In its simplest form, a non-leaf node at
depth d splits the points in the sub-tree along the hyper-plane
xi = c, where i = d mod k, and c is the median value of the ith
coordinate of the points it splits. Figure 2 illustrates this for a
2-dimensional scenario.

Stg-trees. As illustrated in Figure 3, an stg-tree consists of
two parts: the tree nodes and a set of leaf blocks. The tree
nodes correspond to a kd-tree. Given s spatial attributes and
m other attributes on which the index is to be built, we create
a k = 2× s+m dimensional kd-tree over these attributes. Note
that the set of m attributes can include one or more temporal
attributes. An internal node at depth d stores the median
value of the (d mod k)th coordinate of the points covered by
that node together with pointers to its two children. A leaf
node in an stg-tree points to a leaf block which stores data
corresponding to a collection of records. This data consists of
values of the attributes on which the index is being created
along with a pointer to the location of the actual record. Each
leaf block satisfies all the constraints specified by the path from
the root to the corresponding leaf. Note that this differs from
a traditional kd-tree, where each leaf node corresponds to a
single record. The size of a leaf block is a parameter specified
while creating the index. In addition to storing a pointer to a
leaf block, a leaf node also stores the k-dimensional box that
bounds all the records in that block.

The two-part structure of stg-trees serves three purposes.
Intuitively, the structure clusters points along k-dimensional
axis parallel hyper cubes, thus allowing a k-dimensional range
search to be restricted to nearby nodes. As we discuss in
Section III, candidate leaf blocks are sent to the GPU where
they are searched in parallel. Since queries of interest involve
spatial ranges in the form of polygons, having nearby points
clustered together minimizes the amount of data to be trans-
ferred to the GPU (Property P1), and reduces the the number
of PIP tests that is performed. Furthermore, because the spatial



Procedure CreateIndex
Require: Node parent, Integer depth, Integer startIndex,

Integer endIndex
1: if endIndex− startIndex≤ blockSize then
2: Create data block B for records from startIndex to endIndex
3: parent.lea f = B
4: parent.bound = k-dimensional bounding box of the records in B
5: return
6: end if
7: d = depth(mod k)
8: sort records from startIndex to endIndex w.r.t. attribute corresponding

to dimension d
9: median = findMedian(startIndex,endIndex)

10: parent.le f t = new TreeNode()
11: parent.right = new TreeNode()
12: CreateIndex(parent.le f t,depth+1,startIndex,median)
13: CreateIndex(parent.right,depth+1,median+1,endIndex)
14: return

Procedure SearchLeaf
Require: LeafBlocks LB, Constraint C
1: for each block in LB do
2: for each record in block do
3: if record satisfies C then
4: Result = Result

⋃
{record}

5: end if
6: end for
7: end for
8: return Result

constraints are tested using the GPU on the leaf blocks, having
multiple points to test helps maximize the occupancy of the
GPU (Property P2). Last, but not least, the size of the stg-tree
is reduced by a factor equal to the size of a leaf block. For
example, using a block size of 1024, the number of tree nodes
is three orders of magnitude smaller than the input data. This
enables the internal nodes of the stg-tree to fit into memory,
thus allowing fast, in-memory search over these nodes.

B. Index Construction
Given the dimension k of the index, the records correspond-

ing to a node at depth i of the stg-tree are first sorted on
dimension d = i mod k. The median value of the dth attribute
of the these records is then used to split the records into the
left and right sub-trees at this node. The nodes of the left and
right sub-trees (with depth i+1) are then computed recursively.
When the number of records corresponding to a node becomes
less than a predefined block size, then this node becomes
the leaf node, and a leaf block corresponding to this node
is created. The pseudo-code to create this index is shown in
Procedure CreateIndex.

C. Space Requirements
Let the number of records in the data to be indexed be n.

Let b be the size of each leaf block in terms of the number of
records to be stored. Then, there are nb =

2n
b − 1 tree nodes.

The index is stored in three contiguous memory regions. The
first region stores the n

b − 1 internal nodes of the tree. The
internal nodes are stored as a linear array. The order of the
nodes in this array is obtained through an in-order traversal
of the tree. Figure 4 illustrates the linear order of a stg-tree
having 32 nodes. The tree is forced to be complete through
the addition of dummy nodes to ensure a unique ordering of
the nodes in the linear array.

The second memory region stores the n
b leaf nodes, each

of which consists of the k-dimensional bounding box along

Procedure SearchTree
Require: Node parent, Integer depth, Constraint C
1: if parent.lea f 6= NULL and C

⋂
parent.bound 6= /0 then

2: return parent.lea f
3: end if
4: Set LB = {}
5: d = depth(mod k)
6: if (−∞, parent.median]

⋂
Cd 6= /0 then

7: LB = LB
⋃

SearchTree(parent.le f t, depth+1, C)
8: end if
9: if (parent.median, ∞)

⋂
Cd 6= /0 then

10: LB = LB
⋃

SearchTree(parent.right, depth+1, C)
11: end if
12: return LB

with the offset to its corresponding leaf block. The final region
stores the set of leaf blocks. For each record in a leaf block,
the values of the s+m indexed attributes are stored along with
the pointer to the corresponding record in the database.

III. QUERY EXECUTION

STIG allows for different query execution strategies both
in-memory and out-of-core. The execution of a query on one
or more of the index attributes consists of two steps:
1) Identify the set of potential leaf blocks that satisfy the

constraints specified in the query, and
2) Compute the result set by searching through the identified

leaf blocks.
The execution of Step 1, which identifies potential leaf blocks
to search, depends on the strategy to be used. Note that for a
spatial attribute, the query constraint can be a polygon. When
a polygonal spatial constraint is specified, the bounding box
of this polygon is used as the constraint for the corresponding
spatial attribute to identify the potential leaf blocks LB.

Step 2 computes the result set of the query, and is
performed on the GPU using Procedure SearchLeaf. This
step is embarrassingly parallel, and is therefore accomplished
using a parallel brute-force search among all records within
the identified leaf blocks in the set LB. When a polygonal
constraint is specified for the spatial attributes, the point-in-
polygon test is also performed. Note that, since this search
is on the set of leaf blocks identified in the first step, it can
be accomplished independently and in an out-of-core fashion.
Thus, instead of just a single GPU, multiple GPUs can be
used to improve query performance. Additionally, the presence
of multiple records in a single leaf block helps increase the
occupancy of the GPUs (Property P2). In what follows, we
describe strategies for both in-memory and out-of-core query
evaluation. Additional implementation details can be found in
the GitHub repository mentioned earlier.

A. In-Memory Query Evaluation

We use in-memory query execution when the entire index
fits into GPU memory. The implementation of the first part
of query execution, that of identifying the set of leaf blocks,
depends on the hardware hosting the database. We implement
this step for three possible hardware configurations: hybrid
CPU and GPU, GPU-only, and GPU with dynamic parallelism.

Hybrid: CPU and GPU. Searching the tree nodes is per-
formed on a CPU by traversing the tree nodes using the
recursive Procedure SearchTree. When searching through a
given internal node at depth i, this procedure checks the



Procedure FindLeafBlocks
Require: Node lea f Nodes, Constraint C
1: for each node in lea f Nodes do
2: if C

⋂
node.bound 6= /0 then

3: LB = LB
⋃
{node.lea f}

4: end if
5: end for
6: return LB

validity of the query constraint corresponding to dimension
i mod k, and recursively searches either one or both the sub-
trees at that node. The candidate leaf blocks are then searched
on the GPU (using Procedure SearchLeaf).

GPU. In this strategy, we use Procedure FindLeafBlocks to
perform a parallel brute force search on the leaf nodes of
the set of tree nodes to identify the set of leaf blocks. This
avoids the synchronization overhead that would be caused by
executing Procedure SearchTree in the GPU. SearchTree would
require a parallel breadth-first traversal on the tree, which pro-
cesses all nodes at a given depth in parallel. This would in turn
require synchronization between searches across consecutive
depths. Such an approach does not satisfy Property P3, and
therefore does not provide any advantage for using the GPU.

To implement FindLeafBlocks on the GPU, it is sufficient
to load only the leaf nodes, which are stored in contiguous
memory, into GPU memory. Given that this operation is
embarrassingly parallel, concurrent searches are performed to
test whether the given query constraints satisfy the bounding
box corresponding to each leaf node. Since there is only a
single call to the GPU, the synchronization overhead caused
due to multiple kernel calls is avoided. A sparse boolean array
is used to store whether a particular leaf block is to be searched
or not. A prefix scan is then performed on this array to obtain
the result set of leaf blocks.

While a similar parallel brute-force search could be per-
formed by simply storing the entire data set as blocks and
checking the bounding box of these blocks in the first step,
such an approach is not efficient since locations of applicable
records might be far away, requiring more blocks to be
searched in the second step. The stg-tree indirectly helps in this
situation since it clusters nearby records (in high dimensional
space) into fewer leaf blocks.

Alternatively, taking advantage of the storage structure of
the tree nodes, the array storing them can be divided into
multiple sub-trees, each of which can be searched in parallel.
In such a case, a single GPU core is used to search a given
sub-tree. For example, the tree in Figure 4 can be divided into
either two or four sub-trees as shown, and searched in parallel.
The procedure to divide the set of tree nodes into multiple sub-
trees is explained in detail in Section III-B. However, since
the search time using the brute-force approach is only a few
milliseconds even for data having over 800 million records,
we choose this simpler approach in our implementation.

GPU-DP. Newer NVIDIA GPUs support dynamic paral-
lelism [34], which allows a CUDA kernel to create and
synchronize nested kernels. It allows a child CUDA Kernel
to be called from within a parent CUDA kernel, and can
optionally synchronize on the completion of that child CUDA
Kernel. The parent kernel can then use the output produced
from the child kernel without the involvement of the CPU.

Fig. 4. Internal nodes are stored as a linear array obtained using an in-order
traversal of the stg-tree. The red and blue partitions show the division of tree
into four and two sub-trees, respectively, that can be searched in parallel.

We take advantage of this feature in our implementation to
make the best use of such GPUs. When using dynamic paral-
lelism, if a leaf node satisfies the input query constraints, the
SearchLeaf is launched for that leaf block within the GPU itself
from Procedure FindLeafBlocks. Note that this is different
from the GPU strategy, where the CPU waits (synchronizes)
for FindLeafBlocks to complete before launching SearchLeaf.

B. Out-of-Core Query Evaluation

When the index does not fit into GPU memory, then an
out-of-core approach is used to execute queries. We consider
three possible implementations for this scenario: GPU, hybrid
and multi-GPU.

GPU. First, leaf nodes are divided into blocks of nodes, such
that each block fits into GPU memory. This is straightforward
since the leaf nodes are stored in contiguous memory locations.
These leaf nodes are then searched one block at a time to
identify the leaf blocks that satisfy the query constraints.
The resulting set of blocks is then transferred to the GPU,
again in blocks that fit into memory. Note that in an out-of-
core implementation, it is not possible to use the dynamic
parallelism feature, since the leaf blocks are not present in
GPU memory during the first step.

Hybrid. For the hybrid execution, the CPU is used to search
the tree nodes as described earlier. If the internal nodes of the
index do not fit into CPU memory, the tree nodes are first
divided into a set of sub-trees, each of which fits in memory.
Let the height of the tree be h. Then the tree nodes are divided
into a set of sub-trees at depth i, where i is equal to the smallest
value such that 2h−i+1− 1× sizeof(node) ≤Memory. This is
illustrated in Figure 4, where dividing the tree at depth 1 results
in two sub-trees, and dividing at depth 2 results in 4 sub-trees.
Since, the tree nodes are stored as a linear array using an
in-order traversal, each of these sub-trees correspond to a sub-
array as shown in the figure. Each sub-tree is then processed,
one at a time, to identify the set of valid leaf blocks. As
in the GPU implementation, the second step is executed by
transferring the leaf blocks to the GPU in block sizes that fit
into GPU memory.

Multi-GPU. When multiple GPUs are present, then similar
to the out-of-core GPU implementation, the leaf nodes and
leaf blocks of the index are uniformly distributed among the
GPUs, and the search is performed on each of the GPUs. If



Fig. 5. Command to create an index on the taxi data set.

Fig. 6. MongoDB query to find all trips from lower Manhattan to JFK
and LGA airports during all Sundays of May 2011. In this query, the time
intervals corresponding to the four Sundays are specified using the $or
identifier. The polygon corresponding to lower Manhattan is given by the
vertices {(mx1,my1), . . . ,(mxn,myn)}. The polygons corresponding to JFK
and LGA airports are specified by the vertices {( jx1, jy1), . . . ,( jxk, jyk)} and
{(lx1, ly1), . . . ,(lxp, lyp)}.

after splitting, the index fits into the collective memory of all
the GPUs, then an in-memory based search is performed.

IV. MONGODB INTEGRATION

MongoDB [32] is a widely-used NoSQL database which
stores data using the binary JavaScript object notation (BSON)
format. In this section, we discuss the design choices made to
integrate STIG into MongoDB. Our code is open source and
available at https://github.com/harishd10/mongodb.git.

Command interface. MongoDB does not provide an explicit
interface to add a custom index. However, the JSON format
used for its queries and commands allows for flexibility in
defining new commands. We enable the use of STIG by
modifying the default ensureIndex() command that is used
to create an index in MongoDB. This command requires the
user to specify the attributes on which the index is to be
created together with the type of the attribute. An example
command that creates the 6-dimensional STIG index on the
taxi data is shown in Figure 5. The first identifier, type: “stig”,
informs that the index should be a STIG index. The two
spatial attributes, namely the pickup and dropoff locations, are
specified using the “2d” type identifier. It is assumed that these
spatial attributes are stored as an object which consists of two
attributes: x and y. For example, the coordinates for the pickup
attribute are stored as pickup.x and pickup.y, respectively. We
chose to store the temporal attribute as an integer representing
the Linux epoch time. This helps in quick comparisons of the
temporal attributes.

Query execution. The query optimizer in MongoDB was
modified as follows. When a query is issued, if the query
constraints correspond to a subset of the attributes on which
the index is created, then STIG is used to execute the query.
The command in MongoDB to execute the sample query from
Figure 1 is shown in Figure 6.

The result of the query is a collection of disk addresses
corresponding to the records that satisfy the query constraints.
MongoDB supports a cursor interface, which is used to return
the results of a query to the user.

Multi-CPU query execution. In addition to the three query
execution approaches presented in Section III, we also include
a CPU-based implementation in the prototype. Depending on
the underlying hardware, the appropriate setting can be used.
This allows STIG to be used on machines that do not have
NVIDIA cards. We also support the use of multiple CPU cores

to improve the query execution time in such scenarios. Here,
the final step of searching through the leaf blocks is performed
in parallel on multiple CPUs. Note that when an NVIDIA
GPU is not available, it is advisable to reduce the size of the
leaf blocks. This reduction in block size, while increasing the
height (and size) of the kd-tree part of STIG, enables further
pruning of the tree during the identification of potential leaf
blocks. Additionally, since the number of records in each leaf
block is smaller, it also reduces the number of costly point-
in-polygon test needed in the second step, thus improving the
efficiency of CPU-based query execution.

Index storage. A single STIG index is stored as three
binary files corresponding to the three components of the
index – internal nodes, leaf nodes, and leaf blocks respectively.
Also, given our focus on OLAP-type queries, our current
implementation does not update the created index when new
records are added to the corresponding collection. Users can
schedule index creation to be performed periodically, as new
data snapshots are made available.

V. EXPERIMENTAL RESULTS

In this section, we discuss the performance and scalability
of STIG. The experiments were performed on a worksta-
tion with dual 12-core Xeon E5-2695 processors clocked at
2.40 GHz, 256 GB of RAM, 8 TB of disk storage, and
three NVIDIA GeForce TITAN graphics cards – each having
6 GB of GPU RAM. We first describe the data sets used in
our experiments in Section V-A. In Section V-B, we report
results on the scalability of the index with respect to the
number of GPUs present and query selectivity. Finally, in
Section V-D, we discuss the rationale in using kd-trees over
R∗-trees and compare their performance for querying high-
dimensional data.

A. Data Description

We use two real-world data sets: the NYC taxi data
and Twitter data. Both data sets have the property that the
distribution of the data points is skewed spatially, while they
are uniformly distributed over time.

NYC Taxi data. The NYC taxi data set consists of records
corresponding to over 868 million taxi trips that happened over
a period of five years [43]. The size of the input data, which
was made available as csv files, is 250 GB. Each trip has
attributes corresponding to its pick-up and drop-off locations,
pick-up and drop-off times, along with other relevant data such
as the fare, tip, and distance traveled for that trip.

Twitter data. Twitter provides live public feeds that stream
a subset of the tweets posted during a given time period. We
collected data corresponding to 1.11 billion geo-tagged tweets
over a period of 14 months. Each tweet has information about
time and location where it was posted, and the actual text
together with other statistics such as the retweet count and
favorite count. The data is available as JSON objects and takes
about 440 GB space.

B. Scalability

We use the taxi data to study the scalability properties of
the GPU index. The out-of-core performance was assessed us-
ing the entire data set. To test in-memory and weak scalability
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Fig. 7. Strong scalability of multiple GPUs for in-memory query execution. Using three GPUs leads to a speedup of around 70 times over a CPU-based
implementation of the index. Note that each of the GPUs has 2688 cuda cores.
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Fig. 8. Strong scalability of multiple GPUs for out-of-core query execution. The hybrid strategy, using three GPUs, leads to over 35 times speedup.

performance, the index was created for a subset of the data
uniformly sampled from the entire data set.

The index was created on two spatial attributes—pickup
and dropoff locations, and two temporal attributes—pickup and
dropoff times. Thus, the dimension of the kd-tree used in the
index was six. The leaf block size was set to 4096 for the GPU-
based query execution. For all experiments in this section, we
used a query that retrieves the set of trips from Midtown to
Lower Manhattan. In order to generate different result sizes,
we varied the time constraints of the query.

Varying the Number of GPUs. In what follows we study
both strong and weak scalability behaviors of STIG.

Strong scalability: The first experiment studies how the
speedup attained by the different query execution strategies
varies with an increasing number of GPUs. Note that each
GPU has 2688 cuda cores. The speedup was computed against
a CPU-based implementation of the index, where a single core
of the CPU is used for querying. This experiment serves two
purposes. First, it demonstrates the benefits of using the GPU
when compared to CPU. Second, it helps verify the scalability
of the technique with increasing processing power. In order to
obtain the best performance for CPU execution, we constructed
a traditional kd-tree index (leaf block size = 1).

Figure 7 plots the speedup for two queries, having small
and large selectivity, with increasing number of GPUs when
the index fits into GPU memory. The queries resulted in
105 and 5× 105 records respectively. The GPU and hybrid
implementations are over 70 times faster than the CPU imple-
mentation, while the GPU-DP implementation leads a speedup
of over 60 times.

Figure 8 shows the speedup for queries when the index
does not fit in GPU memory. The full taxi data was used
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Fig. 9. Weak scalability. The size of data used for querying was increased with
the number of GPUs. Note the consistent performance of all the approaches.

for this experiment, and the small and large queries returned
3 million and 13 million records, respectively. Note that for
the out-of-core case, hybrid performs better than the GPU-
only strategy. This is because, when dealing with data that
does not fit in memory, the GPU strategy has an additional
overhead of transferring leaf nodes from the CPU to the GPU
for identifying potential leaf blocks, which is more expensive
than the CPU-based search of the internal nodes that can be
accomplished in-memory because of its size (see Section V-C).

An interesting feature that the plots above show is that we
obtain a higher speedup for large queries when the index fits
in-memory, while the speedup is higher for small queries when
the index does not fit into GPU memory. For the in-memory
case, fewer leaf blocks are processed by the GPU, and thus,
the time to set up the GPU kernel calls takes up a significant
fraction of the total query execution time. When more leaf
blocks are processed, the GPU occupancy increases resulting
in the initial setup time becoming insignificant, thus improving
the speedup. In the out-of-core scenario, when more leaf blocks
are processed, there is a larger memory transfer overhead, thus
impacting the speedup.
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Fig. 10. Comparison of query execution times of the different approaches with increasing query selectivity. We obtain an almost linear performance with
increasing query selectivity. Note that GPU and hybrid strategies perform almost the same when the data fits in memory.

Surprisingly, the GPU-DP strategy is marginally slower
than GPU. This is because the time taken to setup and execute
multiple leaf search kernels directly from the GPU is more
than the time taken to launch the second step from the CPU.
Unlike our scenario, we believe that the dynamic programming
feature will be useful when multiple synchronizations are
involved. As mentioned in Section III-B, we do not use the
GPU-DP strategy for out-of-core queries. In order to make
efficient use of the dynamic parallelism feature, the GPU-
DP implementation requires the leaf blocks to be in memory
during the first step. This amounts to transferring the entire
index, that is all the leaf blocks, into the GPU memory. Since
in most queries, the majority of the leaf blocks is not used, this
causes unnecessary memory transfers resulting in no advantage
over the GPU or CPU-based hybrid implementation.

Weak scalability: We compared the performance of the dif-
ferent strategies with an increasing number of GPUs where
the data and query size is fixed per GPU. Figure 9 shows the
query execution times for the different strategies. The (almost)
constant time for an increasing number of GPUs demonstrates
that our approach is scalable and can perform efficiently in a
multi-GPU environment.

Varying Query Selectivity. We now compare the time
taken to execute queries using the various strategies while
increasing query selectivity. As mentioned earlier, the queries
used identify all trips that originate in Midtown Manhattan
and end in Lower Manhattan. The selectivity was controlled
by adjusting the time interval constraints of the queries, i.e.,
pickup and drop-off times.

In addition to the strategies described in Sections III-A and
III-B, we also compare the query execution time of a parallel
CPU implementation (Section IV), where the leaf blocks are
searched in parallel on multiple CPU cores. For the parallel
CPU implementation, we created the STIG index with a leaf
block size of 1024, which provided the best performance. For
the GPU-based strategies, we report results obtained when
using three GPUs.

Figure 10 (left) compares the query execution time with
increasing selectivity when the index fits in memory. All
three GPU-based strategies have similar performance in this
scenario–the tree lines overlap. Also, note that the time taken
to execute a query resulting in over 6.5 million records is just
around half a second when using these strategies. The sample
data in this case consisted of approximately 200 million trips
(data points). This size was selected so that the memory of all
three GPUs was required to store the index. That is, the index

does not fit into memory of even two of the GPUs.

Figure 10 (right) compares the query execution times when
using the entire taxi data. In this scenario, we observe that the
hybrid strategy consistently performs better than the GPU and
multi-CPU strategies. Note that the time taken to execute a
query is only around 4 seconds even for queries results as
large as 27 million records.

Effect of Leaf Block Size. For all the above experiments,
we experimented with multiple leaf-block sizes and chose the
ones provided the best performance for the different scenarios.
For example, having a larger leaf block size when using one
CPU might be more cache-friendly, but also increases the
number of PIP tests performed which significantly increases
the query execution time. On the other hand when using a
GPU (or multiple CPUs), the parallel execution of the PIP
tests overcomes this trade-off. The size of the tree is inversely
proportional to the leaf block size. However, making the leaf
block very large offsets the advantage of using GPUs since not
only more data needs to be transferred to the GPU, but more
PIP tests also have to be performed.

C. Database Performance

We now compare the end-to-end performance of queries
across different database systems. In particular, we compare
the time taken using STIG on MongoDB with: the freely-
available PostgreSQL, and a commercial database system.
Due to legal restrictions, the commercial database system is
anonymously identified as ComDB. MongoDB was configured
to use the three GPUs present in the test workstation. In all
experiments, we use the Hybrid strategy for query execution
since it was shown to have the best performance for the out-
of-core configuration. We start by discussing the time taken to
create indexes on the taxi and Twitter data sets on the different
platforms, and then we compare the execution times for queries
typically issued by domain experts on these data sets.

Database Setup and Index Creation. For the taxi data,
the STIG index in MongoDB was created on four attributes,
namely, pickup time, dropoff time, pickup location and dropoff
location, respectively. Note that a location consists of latitude
and longitude coordinates, and correspond to two dimensions
in the stg-tree. On both PostgreSQL (PostGIS) and ComDB,
spatial indexes were created on pickup and dropoff locations,
together with B-tree indexes on pickup and dropoff time.
Creating the index using MongoDB took a little over 2 hours,
while it took roughly 18 hours and 35 hours, respectively, to
create the required indexes on PostgreSQL and ComDB.



TABLE I. TIME TO CREATE INDEXES ON DIFFERENT DATABASE
SYSTEMS.

Data # Records MongoDB PostgreSQL ComDB
(in million) Time Time Time

Taxi 868 2 h 14 m 17 h 56 m 35 h 31 m
Twitter 1112 2 h 07 m 11 h 06 m 18 h 27 m

For the Twitter data, the STIG index in MongoDB was
created on two attributes – the tweet time and location –
and took a little over two hours. On the other hand, it took
around 11 hours in total to create a spatial index on the tweet
location and B-tree index on tweet time on PostgreSQL, and
over 18 hours on ComDB. Note that we ensured that all other
transactions were blocked when creating the indexes. The time
taken to create indexes using the different database systems
is summarized in Table I. To fine-tune query performance
and to enable the optimizer to make informed plan choices,
commands were issued on both PostgreSQL and ComDB to
collect statistics on all the attributes on which the indexes were
created. The queries used in the evaluation involved constraints
only on these attributes.

Index size: As mentioned in Section II-C, the three-part struc-
ture of STIG leads to a substantial decrease in the size of
the data structure to be searched in the first step. This can
be observed from the space occupied by the internal and leaf
nodes. For the taxi data, the size of the internal and leaf nodes
was 30 MB and 20 MB, respectively. For the Twitter data,
the corresponding sizes were 25 MB and 13 MB. Given such
small sizes, even for data having around a billion records, it
is possible to efficiently perform the tree search on a CPU
without incurring any performance penalty. Even though the
leaf block sizes for these two data sets are larger (46 GB and
34 GB), since only the filtered blocks are searched, the memory
access/transfer overheads are minimal.

Query Execution.

Taxi data: We use the following queries to test the performance
of the different database systems on the taxi data.

1) Find all trips that occurred between Lower Manhattan and
the two airports, JFK and LGA, during all Sundays in May
2011.

2) Find all trips that occurred between Lower Manhattan and
the two airports, JFK and LGA, during all Mondays in May
2011.

3) Find all trips that occurred between Midtown and the two
airports, JFK and LGA, during all Sundays in May 2011.

4) Find all trips that occurred between Midtown and the two
airports, JFK and LGA, during all Mondays in May 2011.

Table II compares the query execution time of the different
database systems for these queries. Even though these queries
return only around 13,000 records, the results indicate that
existing database systems are not suitable for the interactive
operations required by visual analytics tools. Note that STIG
is over 6000 times faster than PostgreSQL and more than 250
times faster than ComDB.

The significant speedup obtained can be attributed to two
important limitations of the query execution strategy followed
by existing systems. First, the optimal query plan as identified
by the optimizer has to perform one or more costly joins and
filtering operations over the records obtained from multiple
index scans. Figure 11 shows the query plans used by the

TABLE II. COMPARISON OF EXECUTION TIMES FOR
SPATIO-TEMPORAL QUERIES ON THE TAXI DATA ACROSS DIFFERENT

DATABASE SYSTEMS.
Query MongoDB PostgreSQL ComDB

Time(s) Time(s) Speedup Time(s) Speedup
1 0.075 503.9 6718 20.6 274
2 0.080 501.9 6273 23.3 291
3 0.067 437.8 6534 21.6 322
4 0.070 437.1 6244 32.6 465

(a) Postgres (b) ComDB

Fig. 11. Optimal query plans (as selected by the query optimizer) used to
execute Query 1 on the taxi data.

two database systems to execute Query 1 on the taxi data.
Both Postgres and ComDB perform a join operation followed
by a filtering operation. In addition, since index scans are
performed on a spatial attribute, a large number of expensive
point-in-polygon tests are performed during query execution.
This number is further increased if additional spatial filtering
is performed during a later stage of query execution. For ex-
ample, PostgreSQL performs index scans for the three spatial
constraints. On the other hand, ComDB performs an index scan
to select records satisfying the pickup location constraint, and
filters on the dropoff location during the last stage of query
execution. Since these spatial constraints are in the form of
arbitrary polygons, the large number of containment checks
slows down the query execution.

In contrast, due to the multi-dimensional nature of STIG,
we need to perform only a single index scan for such queries.
Moreover, since the polygon containment tests are performed
in parallel in the GPU, we are also able to obtain a significant
speed-up in the query execution time.

Twitter data: We use the following queries to study the
performance of the different database systems on the Twitter
data.

1) Select all tweets posted from Washington DC in June 2013.
2) Select all tweets posted from Boston in June 2013.
3) Select all tweets posted from Manhattan in June 2013.

These queries result in 1.3× 105, 1.5× 105, and 3.7× 105

records respectively. Table III shows the query execution
times for the three database systems. Our approach is at least
two orders of magnitude faster than both PostgreSQL and
ComDB. When using our index on MongoDB, the actual
query execution time is less than 50 ms for all queries—the
remaining time is spent on retrieving the result records to be
returned. This is reflected in the table, where the times are
proportional to the result sizes.



TABLE III. COMPARISON OF QUERY EXECUTION TIMES FOR
SPATIO-TEMPORAL QUERIES ON THE TWITTER DATA ACROSS DIFFERENT

DATABASE SYSTEMS.
Query MongoDB PostgreSQL ComDB

Time(s) Time(s) Speedup Time(s) Speedup
1 0.246 161.2 655 109.6 445
2 0.288 151.2 525 157.7 547
3 0.558 286.0 512 216.8 388

Compared to the queries over the taxi data, the large
query result size for the Twitter queries adversely affects the
execution times in ComDB. However, we notice an improved
performance by PostgreSQL. This is because, the query plan
chosen by PostgreSQL (Figure 11(a)) for a taxi query initially
scans for all records that satisfy the spatial constraints, and
finally filters on the time constraint. As mentioned earlier,
this increases the number of point-in-polygon tests that are
performed (in the worst case, for each trip record, 3 tests need
to be performed corresponding to one pickup polygon and
two dropoff polygons). In the case of Twitter data, there is
only one spatial attribute, which not only reduces the number
of joins needed, but also significantly reduces the number of
costly polygon containment tests since there is only a single
polygonal constraint.

On the other hand, for a taxi query, ComDB first identifies
records that satisfy the pickup spatial constraint and the tempo-
ral constraint. This result is then filtered based on the dropoff
spatial constraint. The dropoff constraint test is therefore
performed on a smaller subset of the data compared to the
number when performing the spatial index scan (which indexes
the entire data set). This significantly reduces the number
of polygon containment tests required (note that there are
two polygons specified for the drop-off location). It therefore
performs significantly better than PostgreSQL for taxi queries.
However, in case of Twitter queries, both ComDB and Post-
greSQL have similar query plans, thus showing comparable
performance.

D. Kd-tree vs. R∗-Tree

R-tree-based indexes are known for their robustness against
data skew and suitability for disk-based query processing. They
are the most widely used index type in spatial extensions
available in existing database systems. Nevertheless, they have
two critical drawbacks for high-dimensional spaces that makes
them unsuitable for our purpose. First, optimizing an R*-tree
for high-dimensional data, i.e., minimizing overlapping regions
while maximizing coverage of the minimum bounding rectan-
gles (MBR) of child nodes, is both non-trivial and computa-
tionally expensive. Typically good splitting strategies [8], [18]
have quadratic growth with the number of dimensions, making
the index construction process less scalable. Second and more
important for our purpose, the overlapping regions among the
child nodes of the tree grows rapidly with the increase in the
number of dimensions. Thus, query performance is hampered
as more false-positive nodes have to be scanned [8].

Different from R-trees and R∗-trees, the bounding boxes of
sibling nodes in a kd-tree do not overlap. To test the practical
effect the overlapping nodes of a high-dimensional R∗-tree
have, we used a subset of the taxi data having 67 million
trips and performed a set of bounding box queries on in-
memory CPU implementations of both an R∗-tree and a kd-
tree. Figure 12 plots the query times obtained with increasing
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Fig. 12. Comparing the performance between a 6D kd-tree and R∗-tree.

query selectivity. Note that the kd-tree consistently performs
better than the R∗-tree. In fact, increasing the number of query
constraints had a higher impact on the R∗-tree than on the kd-
tree. This is because of the large overlap in the R∗-tree nodes,
requiring more nodes to be scanned during the search traversal.
Even for a query returning over 11 M records, the kd-tree takes
less than 600 ms, while the same takes 9 seconds using the
R∗-tree. Given the sub-second response times required for our
application, we opted to use kd-trees as the basis for our index
structure. Note, however, that the R-tree (or any block-based
structure) can be transformed into a stg-tree-like structure to
leverage GPUs for speeding up spatial queries.

VI. DISCUSSION

Spatial data structures. Other choices of data structures used
for spatial indexes are the quad tree [14] and grid index [38].
While these can also be extended to support points in high-
dimensional spaces, they quickly become inefficient for large
and skewed data sets. The taxi and Twitter data sets used in our
experiments are uniformly distributed over time, but spatially
skewed. For example, in the taxi data, there is a high density of
taxi pickups and dropoffs near transit locations such as airports
or train stations, but in parts of upper Manhattan or the Bronx,
there are significantly fewer pickups and dropoffs. This skew
would result in a high-depth quad tree, thus decreasing its
efficiency. In the case of a grid index, while some of the grid
cells would contain a large number of data points, others would
have very few, making the distribution of the data uneven.
More importantly, the resolution of the grid which is pre-
defined could further hamper the efficiency of queries.

Updating the index. Supporting dynamic updates to the index
would require two main properties to be satisfied. First, the
update has to ensure that the resulting tree is balanced. Second,
for effective usage of GPUs, the different components of the
index, especially the leaf nodes and leaf blocks, should be in
contiguous memory locations. Since the focus in this work is
on the analysis of historical data, we decided against support-
ing dynamic updates to the index. Also, given the relatively
short time required to create the index (approximately two
hours for indexing 1 billion records), users can schedule index
creation to be performed periodically.

A naı̈ve update approach could create a highly-unbalanced
tree and negatively impact query performance. In future work,
we plan to explore data structures similar to the kd-B-tree [39]
to support updates to the index. The kd-B-tree is a multiway
tree similar to the B-tree that supports dynamic updates.
However, the dynamic nature of this data structure makes it



non-trivial to split the search operation across multiple GPUs.
We also plan to explore other space division strategies used
for kd-tree creation in order to help speedup index creation
and to obtain more efficient kd-trees.

Choice of database system. The analysis tools we use to
explore urban data are Web based and use MongoDB as their
data store. We therefore chose to integrate our index into
MongoDB to obtain interactive query execution for these tools.
However, since the storage structure of STIG is independent
of the underlying database system, it can also be integrated
with a relational database system.

VII. RELATED WORK

The advent of programmable GPUs has resulted in several
efforts to utilize them for database operations. Due to the
geometry involved when using spatial data, it is natural to
exploit GPUs for processing and querying such data. Directly
related to this work, Bandi et al. [4] proposed an architecture
to perform spatial queries using GPU hardware. They use the
GPU for computing intersection and containment properties by
rendering the polygons and points using the GPU. This was
implemented as a stored procedure in Oracle. Zhang et al. [47]
proposed a GPU-based point-in-polygon spatial join. They
used a grid file based approach to join a set of 2D points
with a set of polygons. In [49], they perform nearest-neighbor
based spatial joins. Both techniques assume that the entire data
set fits in CPU memory. This assumption, however, does not
hold for larger data sets such as the taxi data.

Cazalas et al. [9] proposed a GPU-based framework to
obtain proximity views on spatio-temporal streaming data.
They use the GPU to compute the distance matrix of the set
of objects, and use this distance matrix to obtain the required
proximity views. Ilarri et al. [21] provide a comprehensive
survey on existing techniques used for spatio-temporal query
processing. These techniques work on temporal data, where
objects are constantly in motion. The queries are performed
on the existing state of the objects, taking only the current
positions into account. Therefore, queries involving historical
states of the objects are not supported.

GPUs have also been used to speed up relational database
operations. The work by Govindaraju et al. [17] was one of the
first to exploit the use of GPUs for relational database query
processing. They evaluated the performance of operations such
as selection and aggregation using GPUs on databases having
up to one million records. Zhang et al. [48] used GPUs to
compute aggregates over spatial data. Govindaraju et al. [16]
proposed a GPU-based sorting technique that is capable of
efficiently sorting over a billion records using the GPU.
Kim et al. [27] used GPUs to perform index search using
memory and layout optimized binary trees. He et al. [19]
presented and evaluated the performance of different join
operations using the GPU. Fang et al. [11] evaluated various
compression schemes on GPUs in order to improve GPU-
based query processing by decreasing the memory transfered to
GPUs. Ao et al. [3] used GPUs to perform index compression
and a binary search based list intersection. Krueger et al. [28]
proposed a GPU-based dictionary merge algorithm for column-
oriented databases.

Most of the the above mentioned techniques were imple-
mented as standalone systems. More recently, Aji et al. [2]
introduced Hadoop GIS, a spatial data warehousing system
built over Hadoop, and integrated into Hive [42]. While this
system can handle large data sets, its performance for spatial
containment queries, even on a single spatial attribute, is
on par with existing database systems, and is therefore not
suitable for interactive environments. Existing, freely-available
database systems use traditional spatial indexes to support
spatial queries. PostGIS / PostgreSQL [36] use an R-tree based
index, while SQLite [41] uses an R*-tree to execute spatial
queries. MongoDB [32] uses a geohash-based index [15] to
support spatial queries. However, in these systems a spatial
index can support only one spatial attribute.

Kd-trees have been used to build multi-dimensional in-
dexes [39], as well as image indexes [22], [23]. The kd-
trees used in these applications are CPU-based and do not
lend themselves to interactive querying. Kd-trees have also
been used for spatial indexes [24], [37]. Again, these indexes
support the index only on a single spatial attribute, and are
not suitable for interactive query execution. GPU-based kd-
trees are commonly used in ray tracing [20], [44], [50]. These
approaches build a kd-tree on the triangles of the input geom-
etry, which is then used to identify the triangles intersected by
a ray corresponding to a pixel. These approaches are restricted
to indexing just the triangles. They also assume that the entire
data fits into GPU memory. As mentioned earlier, this is not
true for data sets like the NYC taxi data, which do not fit into
CPU memory let alone GPU memory.

VIII. CONCLUSION

The explosion in the volume of spatial-temporal data
obtained through different sensors, combined with the use of
interactive visualization tools to analyze such data, imposes
stringent response time requirements on the execution of
spatio-temporal queries. In this paper, we proposed STIG, a
GPU-based indexing scheme that supports interactive response
times for such queries over large data. We demonstrate the effi-
ciency of the index using two real-world data sets: 868 million
NYC taxi trips and 1.1 billion Twitter posts. Our experimental
results show that STIG is between 35 and 80 times faster than
the CPU-based implementation of the index. We have also
integrated STIG into the freely-available MongoDB database
and compared query evaluation under this implementation
against both open-source and commercial databases that use
traditional spatial indexes: MongoDB+STIG is between two
and three orders of magnitude faster.

Our current implementation has some limitations that we
intend to address in future work. First, it does not support up-
dates to the index when new records are added to the database.
Users are required to re-create the indexes periodically. Note
that a naı̈ve update approach could create a highly-unbalanced
tree and adversely affect the query performance. We plan to
investigate alternative update procedures that ensure the result-
ing stg-tree is balanced. Second, because our implementation
is based on CUDA, it cannot be used on systems with other
graphics cards. We plan to provide an OpenCL implementation
that supports all graphics cards. We would also like to integrate
STIG into PostgreSQL. Last, but not least, we intend to add
support for other spatial queries including nearest neighbors.
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